Solid Tumour Section
Mini Review

Soft tissue tumors: Alveolar rhabdomyosarcoma

Frederic G Barr

Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA (FGB)

Published in Atlas Database: January 2009
Online updated version: http://AtlasGeneticsOncology.org/Tumors/AlvRhabdomyosarcomaID5194.html
DOI: 10.4267/2042/44650

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Note: Alveolar rhabdomyosarcoma (ARMS) refers to one subtype of the rhabdomyosarcoma family of soft tissue tumors. These are mesenchymal tumours related to the skeletal muscle lineage.

Classification

ARMS is one of two subtypes of rhabdomyosarcoma. The other major subtype is embryonal rhabdomyosarcoma (ERMS). Within the ARMS subtype, there is no further histopathologic subtyping of clinical significance. Genetic subtyping has identified PAX3-FKHR, PAX7-FKHR, and fusion-negative subsets of ARMS; the clinical significance of these subsets is still being actively investigated.

Clinics and pathology

Embryonic origin

ARMS tends to occur within skeletal muscle and is postulated to derive from precursor cells within the skeletal muscle. Therefore, the embryonic derivation of these tumors is presumed to be mesoderm, the same as that of skeletal muscle.

Histopathology of alveolar rhabdomyosarcoma
(hematoxylin-eosin, original magnification: 100X; courtesy of Dr. Linda Ernst).
Epidemiology

ARMS accounts for 20-30% of all RMS tumors. Therefore ARMS represents ~1% of all malignancies among children and adolescents, and has an annual incidence of ~1 per million. Many ARMS tumors occur in older children and young adults - this age association characterizes the more prevalent PAX3-FKHR-positive subset of ARMS. In contrast, PAX7-FKHR-positive ARMS as well as fusion-negative tumors tend to occur in younger children.

Clinics

ARMS often occurs within skeletal muscle of the extremities but can also occur in other sites including the trunk and head and neck. This tumor often presents as a painless mass, but in other cases, may be discovered from symptoms produced by compression of structures at the primary site. A substantial fraction of patients with ARMS (25-30%) will have metastatic disease at the time of diagnosis. ARMS most frequently spreads to bone marrow, distal nodes, and bone. The standard treatment for ARMS is a combination of surgery, radiation, and intensive chemotherapy.

Pathology

Tumor cells in ARMS are relatively small with scant cytoplasm. They have round regular nuclei with a monotonous chromatin pattern. The cells form aggregates interrupted by fibrovascular septae, and within these aggregates, areas of discohesion often form, resulting in spaces that resemble alveoli of the lung. In some ARMS cases, there are few fibrovascular septae, no alveoli-like spaces, and a predominant cellular small round cell population; the term "solid variant" applies to this situation.

In addition to general immunohistochemical markers to identify RMS, certain markers aid in the identification of ARMS. Immunostaining for myogenin and MyoD show different patterns between ARMS and ERMS, such that most cells within an ARMS tumor stain positive whereas fewer cells within an ERMS tumor stain positive. In addition, based on microarray studies that distinguish fusion-positive ARMS from fusion-negative ERMS, AP2β and p-cadherin were found to be specific markers for the fusion-positive ARMS subtype.

Prognosis

Patients with ARMS tumors have a poorer outcome than patients with ERMS tumors. The 4-year failure free survival rates for patients with localized and metastatic ARMS are 65% and 15%, respectively. Other risk factors that influence outcome of ARMS include primary site, size of primary tumor, extent of local spread, and the presence of nodal and distal metastases.

In an analysis of patients from the IRS-IV study, patients with localized PAX3-FKHR and PAX7-FKHR-positive ARMS had comparable outcomes. In contrast, among patients presenting with metastatic disease, those with PAX3-FKHR-positive tumors had a significantly poorer outcome than those with PAX7-FKHR-positive tumors (4-year overall survival rate of 8% compared to 75%, p=0.0015).

Genetics

Note

Most cases of ARMS occur sporadically without an apparent genetic predisposition.
Cytogenetics

Cytogenetics Morphological
Most ARMS cases contain one of two recurrent chromosomal translocations: t(2;13)(q35;q14) or t(1;13)(p36;q14). Reciprocal balanced translocations are often present for the 2;13 translocation. The 1;13 is sometimes visible as a balanced translocation, and other times is associated with a subsequent amplification event. Additional cytogenetic changes in ARMS include:
- Amplification events involving 12q13-15, 2p24, 1p36, 13q14, 2q34-pter, 13q31 (as determined by comparative genomic hybridization studies).
- Numerical chromosome gains, such as chromosomes 2, 12, and 20.

Genes involved and proteins

FOXO1
- **Location**: 13q14
- **Protein**: Transcription factor.

PAX3
- **Location**: 2q35
- **Protein**: Transcription factor.

Result of the chromosomal anomaly

Hybrid Gene

Description
The 2;13 and 1;13 translocations rearrange the PAX3 or PAX7 gene on chromosome 2 or 1 and the FOXO1 gene on chromosome 13 to generate a PAX3-FOXO1 or PAX7-FOXO1 fusion gene. Among ARMS tumors, ~60% are PAX3-FOXO1-positive, ~20% are PAX7-FOXO1-positive, and ~20% are fusion-negative.
The PAX7-FKHR fusion is often amplified in tumors (70% of PAX7-FKHR-positive cases) whereas the PAX3-FKHR gene fusion is much less frequently amplified in tumors (5% of PAX3-FKHR-positive cases). Gene amplification appears to be one mechanism to increase the expression level of the gene fusion in ARMS tumor cells.

Fusion Protein

Description
These fusion genes encode fusion transcription factors with a PAX3 or PAX7 DNA binding domain and FOXO1 transactivation domain.
Comparison of wild-type and fusion products associated with the 2;13 and 1;13 translocations. The paired box, octapeptide, homeobox and fork head domain are indicated as open boxes, and transcriptional domains (DNA binding domain, DBD; transcriptional activation domain) are shown as solid bars. The vertical dash line indicates the translocation fusion point.

Expression / Localisation
Nuclear.

Oncogenesis
Transcription dysregulation.

References

Davis RJ, D'Cruz CM, Lovell MA, Biegel JA, Barr FG. Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 1994 Jun 1;54(11):2969-72

Davis RJ, Barr FG. Fusion genes resulting from alternative chromosomal translocations are overexpressed by genespecific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8047-51

Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene. 2001 Sep 10;20(40):5736-46

This article should be referenced as such: