SOX4 (SRY (sex determining region Y)-box 4)

David L Satinover, Chris A Moskaluk

Dept. of Pathology and Dept. of Biochemistry and Molecular Genetics P.O. Box 800214 University of Virginia Health System Charlottesville, VA 22908, USA (DLS, CAM)

Published in Atlas Database: January 2009
Online updated version: http://AtlasGeneticsOncology.org/Genes/SOX4ID42358ch6p22.html
DOI: 10.4267/2042/44645

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: EVI16
HGNC (Hugo): SOX4
Location: 6p22.3

DNA/RNA

Description
This intronless gene encompasses 4789 base pairs.

Transcription
The mRNA transcript is 4789 base pairs.

Protein

Description
The mRNA encodes a 47.3 kDa protein consisting of 474 amino acids.

Expression
SOX4 appears to be fairly ubiquitously expressed at low levels in most adult tissues, with high levels found mostly in T lymphocytes. Its expression is up-regulated in many cancer types relative to benign tissue of origin (Rhodes et al., 2004).

Localisation
Nucleus.

Function
SOX4 is a member of the class I SRY-related HMG-box family of transcription factors. It has been shown to be involved in determination of cell fate and the regulation of embryonic development of many organ systems including heart (Restivo et al., 2006; Schilham et al., 1996), pancreas (Lioubinski et al., 2003; Wilson et al., 2005) and brain (Cheung et al., 2000; Hong and Saint-Jeannet, 2005). SOX4 has been shown to be a transcriptional activator in lymphocytes (van de Wetering et al., 1993) and facilitates B and T cell differentiation (Schilham et al., 1996; Schilham et al., 1997). SOX4 gene expression is up-regulated in many tumor types, with experimental evidence suggesting that this contributes to cellular transformation (Liu et al., 2006; Shin et al., 2004), control of apoptosis (Liu et al., 2006; Pramoonjago et al., 2006; Aaboe et al., 2006; Ahn et al., 2002) and/or a metastatic phenotype (Liao et al., 2008; Tavazoie et al., 2008).

Homology
SOX4 is part of a family of Sox transcription factors that share significant homology. SOX4 is in the Group C Sox homology group that includes SOX11, SOX22 and SOX24. SOX4 shares the highest degree of homology with SOX11 (Bowles et al., 2000).

Implicated in

Adenoid cystic carcinoma (ACC)

Note
Gene expression profiling using micro arrays has shown SOX4 is one of the most up-regulated genes in ACC, relative to non-neoplastic tissue of origin (Frierion et al., 2002). Immunohistochemistry analysis confirms the up-regulation of SOX4 in primary ACC tumors compared to normal tissue (Pramoonjago et al., 2006).

Disease
ACC is the second most common malignant salivary gland tumor, representing 28% of malignant submandibular gland tumors.
Bladder cancer

Note
Whole genome expression profiling of 166 bladder tumors and 27 normal samples showed SOX4 upregulated 5 fold in the tumors. When over-expressed in the bladder cell line HU609, SOX4 strongly impaired cell viability and promoted apoptosis (Aaboe et al., 2006).

Prognosis
A correlation was found between strong SOX4 expression levels and increased patient survival.

Breast cancer

Note
MicroRNA miR335 has been shown to regulate Sox4 levels and is frequently found lost in primary tumors of breast cancer patients who relapse (Tavazoie et al., 2008). In experimental model systems, it appears that SOX4 is a primary gene product associated with metastasis and migration.

Leukemia

Note
SOX4 transcript is found in high levels in B-ALL and T-ALL, but not in AML, CML, CLL, Sezary syndrome, or T cell prolymphocytic leukemia (Mallampati et al., 2008). Retroviral tagging in mouse models suggests a functional role for SOX4 in hematologic malignancies (Shin et al., 2004; Suzuki et al., 2002; Lund et al., 2002).

Lung cancer

Note
SOX4 is upregulated is a significant percentage of lung cancers (Bangur et al., 2002; Friedman et al., 2004) and antibodies to this protein can be found in the serum of lung cancer patients (Friedman et al., 2004).

Hepatocellular carcinoma

Note
Experimental manipulation of SOX4 in hepatocellular carcinoma cell line models suggests that SOX4 is pro-apoptotic in this tumor type (Ahn et al., 2002). Paradoxically, another group found that knocking down SOX4 expression in a hepatocellular carcinoma cell line decreased tumorigenicity (Liao et al., 2008).

Medulloblastoma

Note
SOX4 is significantly overexpressed in medulloblastoma compared to normal cerebellum and ependymoma (de Bont et al., 2008; Yokota et al., 2004).

Prognosis
A trend was found towards increased survival with increased levels of expression of SOX4.

Prostate Cancer

Note
SOX4 has been shown to be over-expressed in prostate tumor samples by microarray analysis, real-time PCR and immunohistochemistry. Additionally, stable transfection of Sox4 into non-transformed prostate cells form colonies in soft agar, suggesting SOX4 can be a transforming oncogene.

References

SOX4 (SRY (sex determining region Y)-box 4)
Satinover DL, Moskaluk CA

This article should be referenced as such: