BCL10 (B-cell CLL/lymphoma 10)

Pei Lin
Department of Hematopathology, University of Texas-MD Anderson Cancer Center Houston, Texas, 77030 USA (PL)

Published in Atlas Database: January 2009
Online updated version: http://AtlasGeneticsOncology.org/Genes/BCL10ID222ch1p22.html
DOI: 10.4267/2042/44630

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity
Other names: Bcl-10; CARMEN; CIPER; CLAP; Cellular-E10; c-E10; eCARMEN; hCLAP; mE10
HGNC (Hugo): BCL10
Location: 1p22.3

DNA/RNA
Description
12,308 bases, 4 exons, Transcription: 4.2 kb.

Transcription
Transcription produces 4 alternatively spliced variants and 1 unspliced form with 2,974 bps or 2,819 bps.

Protein
Description
233 amino acids with a molecular weight of 26252 Da.

Expression
BCL10 is expressed in all normal and malignant tissues. In the lymphoid tissue, it is highly expressed in the germinal center but low in the mantle zone, and intermediate in the marginal zone. BCL10 is likely to play a role in the normal development of the germinal center.

Localisation
BCL10 resides in the cytoplasm or perinuclear region of normal cells.

Function
BCL10 functions normally as a proapoptotic protein through caspase recruitment domain (CARD) at the amino terminal and activation of NF-kappaB pathway. This activity requires oligomerization via the CARD domain and interaction between BCL10 and other CARD domain containing proteins including CARD9, CARD10, CARD11 and CARD14.

Homology
Equine herpesvirus-2 E10 gene.

Implicated in
1p rearrangement/non-hodgkin lymphoma

Disease
Extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma).
Phenotype stem cell origin: Marginal zone B-cells.
Epidemiology: Commonly seen in MALT lymphoma involving stomach (approximately 4%) and lung (approximately 9%). Uncommon in MALT lymphoma involving other sites.
Evolution: MALT lymphoma may evolve to diffuse large B-cell lymphoma.

Prognosis
Generally indolent.

Cytogenetics
In t(1;14)(p22;q32). The gene on 14q32 is IgH. The breakpoint on 1p22 involves a recurrent breakpoint upstream of the promoter of BCL10.

Hybrid/Mutated gene
BCL10-IgH. The translocation t(1;14)(p22;q32) is associated
with frameshift mutation of BCL10 and truncation of BCL10 protein distal to CARD. The mutant type of BCL10 enhances cell survival and proliferation through activation of NF-kappaB pathway. MALT lymphomas without BCL10 rearrangement may also carry BCL10 mutation however.

Abnormal protein
MALT lymphomas with t(1;14)(p22;q32) demonstrate strong nuclear BCL10 staining regardless of BCL10 mutation status. MALT lymphoma without t(1;14)(p22;q32) may also show strong nuclear staining. So a strong nuclear BCL10 staining is not always a presumptive evidence of t(1;14)(p22;q32). This pattern is different from the weak cytoplasmic expression observed in normal germinal center B-cells.

Oncogenesis
Loss of CARD domain through translocation and mutations lead to loss of proapoptotic activity. In addition, MALT1 and BCL10 may synergize in the activation of NF-kappaB leading to enhanced cell survival and downstream activation of anti-apoptotic/proliferative signals.

Various cancers
Disease
BCL10 mutations have also been described in follicular lymphoma, Sezary syndrome, malignant mesothelioma, germ cell tumor, and colon cancer.

References

This article should be referenced as such: