Leukaemia Section
Mini Review

t(3;7)(q27;q32)
Björn Schneider, Stefan Nagel, Roderick AF Macleod

DSMZ, German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Inhoffenstr. 7b, 38124 Braunschweig, Germany (BS, SN, RAFM)

Published in Atlas Database: December 2008
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0307q27q32ID1515.html
DOI: 10.4267/2042/44624

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Clinics and pathology

Disease
Splenic Marginal Zone Lymphoma (SMZL).

Etiology
SMZL is quite rare, comprising about 1% of lymphomas. Patients typically present with splenomegaly often involving peripheral blood, liver, and bone marrow. About a third of patients have a slight monoclonal gammopathy, thus SMZL may overlap Waldenstrom's macroglobulinemia.

Epidemiology
Though rare overall, SMZL is still one of the most common small B-cell lymphoma of the spleen. It mainly affects those over 50 years.

Pathology
The histologic, immunohistochemical, and molecular heterogeneity of SMZL suggests it originates from different (centrocytic, monocytoid, lymphoplasmacytic) B-cell populations residing within normal SMZ.

Treatment
Splenectomy. Responds poorly to chemotherapy.

Evolution
May develop into large cell lymphoma.

Prognosis
Favorable: SMZL displays an indolent course: 10 year survival ≅ 70%.

Cytogenetics

Note
t(3;7)(q27;q32) may be a variant of del(7)(q32) - the main recurrent abnormality reported in SMZL.

Probes
BCL6: flanking BACs RP11-208n14 (centromeric) & RP11-67e18 (telomeric); MBR straddling BAC RP11-211g3, MBR straddling fosmid G248P81269F11 (alias WI2802L21).
Figure 1: Cytogenetic analysis of t(3;7) in a DLBCL cell line (RC-K8). G-banding (A) and FISH (B) images show t(3;7)(q27; q32) in a DLBCL cell line RC-K8 established from a patient with DLBCL. Expression profiling shows this cell line to express a related but significantly different set of genes from other DLBCL derived cell lines.

Figure 2: BCL6 and FRA7H Breakpoints in RC-K8 cells. FISH analysis showed rearrangement of BCL6 (A) with FRA7H (B). Treatment of RC-K8 cells with aphidicolin (APC) to induce expression of fragile sites revealed chromatid breaks (ctb) at FRA7H (red arrowhead) as well as elsewhere, e.g. at FRA3D (green). The break at FRA7H induced by APC (B) lies close to the translocation breakpoint present in t(3;7) as determined by LDI-PCR (see below). Interestingly, clastogenesis at FRA7H favored normal chr. 7 homologs over t(3;7) implying stabilization of FRA7H by the latter.

Genes involved and proteins

BCL6

Location

3q27

Note

Breakpoint lies outwith MBR and ABR.
Figure 3: Molecular breakpoint analysis at 3q27 by LDI-PCR. Results of molecular breakpoint analysis by long-distance inverse (LDI)-PCR of the BCL6 and FRA7H junctions on der(3) and der(7) (arrows). Note deletions of 365 bp from chromosome 3 and 416 bp from chromosome 7 (broken lines) on der(7).

Figure 4: BCL6 protein. The BCL6 gene comprises 10 exons. There are two alternative exons 1 (a or b). Only exons 3-10 harbor protein coding sequences.

Figure 5: Expression of BCL6 in Hodgkin lymphoma and DLBCL. Note preferential expression of BCL6 in DLBCL. RC-K8 t(3;7) cells display moderately upregulated BCL6 expression typical of non-IGH BCL6 rearrangements. Heatmap shows upregulation (red), inconspicuous expression (black) and downregulation (green).

Figure 6: Putative gene targets at 7q32 in t(3;7)(q27;q32). The miR-29 sequences (miR-29a and miR-29b1) are located on chromosome 7q32 upstream of RefSeq gene KLF14 which lies outside FRA7H, and within the intron of a putative uncharacterized gene CR618431.
miR-29-a

Location
7q32

Note
miR-29-a and/or miR-29b1 (7q32). miR-29-a/b1 resides inside common fragile site FRA7H (APC inducible, cloned).

Result of the chromosomal anomaly

Hybrid gene

Note
t(3;7)(q27;q32) belongs to the emerging class of non-fusogenic BCL6 translocations. These carry upstream BCL6 breakpoints which lie closer to the transcription unit than ABR breakpoints at ≈ 250 KBp. While BCL6 is undoubtedly upregulated in such cases, expression levels lie below those carrying IGH-BCL6 translocations. In the case of t(3;7) the chromosome 7 breakpoint lies within FRA7H, the first FRA firmly associated with an hematopoietic malignant translocation (as opposed to deletion). Physiological BCL6 expression occurs in germinal centers where it is thought to permit immunological DNA breakage by suppressing apoptosis induced by the p53 damage pathway. It is tempting to suppose that BCL6 expression might also incur the risk of untoward breakage at fragile sites. FRA7H is bereft of RefSeq genes. Apart from putative mRNA transcripts of dubious provenance (several including CR618431 shown in Figure 6 have been inadequately annotated and may be pseudogenes), miR-29-a/b1 are the only verified genes mapped to FRA7H.

References

Boonstra R, Bosga-Bouwer A, van Imhoff GW, Krause V, Palmer M, Coupland RW, Dabbagh L, van den Berg E, van den Berg A, Poppema S. Splenic marginal zone lymphomas presenting with splenomegaly and typical immunophenotype are characterized by allelic loss in 7q31-32. Mod Pathol. 2003 Dec;16(12):1210-7

Schneider B, Nagel S, Kaufmann M, Winkelmann S, Bode J, Drexl HG, MacLeod RA. t(3;7)(q27;q32) fuses BCL6 to a non-coding region at FRA7H near miR-29. Leukemia. 2008 Jun;22(6):1262-6

Vega F, Cho-Vega JH, Lennon PA, Luthra MG, Bailey J, Breeden M, Jones D, Medeiros LJ, Luthra R. Splenic marginal zone lymphomas are characterized by loss of interstitial regions of chromosome 7q, 7q31.32 and 7q36.2 that include the protection of telomere 1 (POT1) and sonic hedgehog (SHH) genes. Br J Haematol. 2008 Jun;142(2):216-26

This article should be referenced as such: