Gene Section
Mini Review

GPR68 (G protein-coupled receptor 68)

Yan Xu
Department of Obstetrics and Gynecology, Indiana University School of Medicine, 975 W. Walnut St IB355A, Indianapolis, IN 46202, USA (YX)

Published in Atlas Database: December 2008
Online updated version: http://AtlasGeneticsOncology.org/Genes/GPR68ID40745ch14q32.html
DOI: 10.4267/2002/44611

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: GPR12A; MGC111379; MGC156983; OGR-1; OGR1
HGNC (Hugo): GPR68
Location: 14q32.12

Note: GPR68 (OGR1) is a G protein-coupled receptor (GPCR), which share high homology with other three GPCRs (TDAG8, G2A and GPR4). OGR1, as well as TDAG8, G2A and GPR4, has been shown to be proton-sensing GPCRs. In particular, OGR1 has been shown to be a proton-sensing receptor in bone. OGR1 is expressed in osteoclasts and osteoblasts, where it mediates acid-induced signaling pathways via G(q/11) protein, phospholipase C, IP(3) formation, and subsequent Ca^2+ release from thapsigargin-sensitive stores. Acidic pH has been shown to induce cyclooxygenase-2 (COX-2) induction and prostaglandin E2 (PGE2) production, resulting in stimulation of bone calcium release and osteoclastogenesis. OGR1 family receptors can also mediate effects of several phospholipids. However, whether the lipid regulation is specific to these receptors is still under debate.

DNA/RNA

Note
GPR68 (OGR1) is a proton sensing receptor. Its physiological role need to be further investigated.

Description
The open reading frame of GPR68 is encoded by a single exon (1095 bp) located at chromosome 14q31.

Transcription
GPR68 transcripts of ~3.0 kb in human.

Protein

Description
Size: 365 amino acids.

Expression
GPR68 is expressed in blood; bone; brain; connective tissue; embryonic tissue; eye; heart; intestine; lung; pancreas; placenta; peripheral blood leukocyte, prostate; skin; stomach; thymus; uterus; chondrosarcoma; leukemia; normal; pancreatic cancer; small intestine, soft tissue/muscle tissue tumor; spleen, stomach tumor; testis, uterine tumor; embryo; fetus; adult.
Localisation
Cell membrane.

Function
Osteoclastogenesis.

Homology
OGR1, GPR4, G2A, and TDAG8 share 40% to 50% homology with each other and seem to form a family of GPCRs. GPCRs form homo- and hetero-dimers or -oligomers. Although GPR4 and OGR1 share more than 50% homology, GPR4 forms strong homo- and hetero-dimers with LPA and S1P receptors, but OGR1 forms very weak homo-dimer and relatively weak hetero-dimers with other receptors.

Implicated in
Prostate cancer

Note
Down regulated in metastatic prostate cancer.

Oncogenesis
OGR1 is down regulated in metastatic prostate cancer tissues and over-expression OGR1 in prostate cancer cells suppresses tumor metastasis. Thus, OGR1 has been considered as a tumor metastasis suppressor gene for prostate cancer (Singh et al., 2007).

References

Seuwen K, Ludwig MG, Wolf RM. Receptors for protons or lipid messengers or both? J Recept Signal Transduct Res. 2006;26(5-6):599-610

Frick KK, Krieger NS, Nehrke K, Bushinsky DA. Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1. J Bone Miner Res. 2009 Feb;24(2):305-13

This article should be referenced as such: