ALDOB (aldolase B, fructose-bisphosphate)

Shian-Yang Peng, Hey-Chi Hsu

Department of General Education, National Taipei College of Nursing, Taipei 100, Taiwan, ROC (SYP), Department of Pathology, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei 100, Taiwan, ROC (HCH)

Published in Atlas Database: November 2008

Online updated version: http://AtlasGeneticsOncology.org/Genes/ALDOB/44287/ch9q31.html

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.

© 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology

DNA/RNA

Note: Locus Tag: RP11-490D19.1.

Description

ALDOB encompasses 14,448 base pairs of genomic DNA on the long arm of chromosome 9 in the telomere- to- centromere orientation. (NCBI Entrez Gene, NC-000009.10, 19-Nov-2008.)
The gene consists of 9 exons, with 115, 122, 212, 55, 161, 84, 193, 200, 526 base pairs, respectively.

Transcription

ALDOB encodes a 1669 bp mRNA, the coding region is from 126bp to 1220bp of the mRNA.
Exon 1 and the 3’ part of exon 9 of the ALDOB gene are non-coding.

Pseudogene

None.
Protein

Note
Names: aldolase B, Fructose-bisphosphate.
Other Names: aldolase 2, Liver-type aldolase.

Description
The 1095 bps open reading frame of ALDOB encodes a 364 amino acids protein with a calculated molecular weight of 39.3kDa.
The functional Aldolase B is a homotetramer. According to the three-dimensional structures of aldolase B homotetramers, the active sites of each monomer locate at the center of the alpha/beta barrels, while the C terminus of the protein is involved in determining the isozyme-specific activity of aldolase. Four isozyme specific regions (ISR) of aldolase B were determined, the first three are expressed by exon 3 of the human aldolase gene, the fourth locates at the C-terminal region.

Expression
There are three genetically distinct and tissue-specific isozymes of fructose-biphosphate aldolase (EC-Number 4.1.2.13) class-I in mammals.
The A isozyme (aldolase A) is expressed mainly in muscle, the B isozyme (aldolase B) in the liver, kidney, stomach and intestine, and the C isozyme (aldolase C) in the brain, heart and ovary.
Aldolase B is the only expressed isofrom in highly differentiated hepatocytes. The high level of gene expression results from cooperation between a liver-specific promoter and an intronic enhancer.

Localisation
Cytoplasm and perinuclear membrane of hepatocytes.

Function
All the three aldolase isozymes catalyze the reversible cleavage of fructose-1,6-(bis) phosphate (FBP) or fructose 1-phosphate (F1P) to dihydroxyacetone phosphate and either glyceraldehyde-3-phosphate or glyceraldehyde, respectively.
Aldolase B has equal activity toward substrate F1P and FBP, and is involved in the two opposite metabolic pathways, glycolysis and gluconeogenesis. Aldolase isozymes utilize covalent catalysis through a Schiff base in the active site of the enzyme, but exhibit distinct catalytic properties.
The Schiff-base lysine is located in the central cavity of the barrel. The enzymatic active sites at aldolase B protein sequence are: Arg 55 and Lys146 for binding of c-1-phosphate group of the substrate; Lys 299, the Schiff base for dihydroxyacetone-p; Try 363 for enzymatic activity toward fructose 1,6-bisphosphate site; Asp33, Glu187 and Lys229 residues for catalytic function.

Homology
The three human aldolase isozymes are similar in sequence with 66% identity between human A and B, 68% identity between B and C, and 78% identity between A and C. Aldolase molecules have seven major conserved common sequence (CCS-1 to -7), that are the constituents forming a basal alpha/beta barrel structure, are conserved in all aldolase molecules beyond isozyme groups. All isozymes have strictly conserved residues in the active site consisting of Asp33, Arg42, Lys107, Lys146, Glu187, Ser271, Arg303, and Lys229.
The identities of aldolase B between human and other animal species are shown bellow.
- [Pongo abelii] aldolase B, fructose-bisphosphate (364/364, 100%).
- [Rattus norvegicus] Aldob, aldolase B fructose-bisphosphate (349/364, 95% identity).
- [Danio rerio] aldolase b, fructose-bisphosphate (277/364, 76% identity).
- [Salmo salar] aldolase B (266/365, 72% identity).

Mutations

Germinal
Recessively inherited mutations in the ALDOB gene, that caused catalytic deficiency of aldolase B, have been found in hereditary fructose intolerance (HFI). Many types of mutation in human ALDOB gene were reported, including missense mutations, nonsense mutations, deletions, insertions and mutation at the splicing regions (list in the diagram above). The mutations bring about reduced enzyme activity and affect structural stability. Mutants that retained tetrameric structure but with altered kinetic properties would reduce its catalytic activity. Mutants with homotetramers dissociated into subunits would have more severe impaired enzymatic activity. The three most common sites are: p.A150P (64%), p.A175D (16%) and p.N335K (5%).

Somatic
Human cancer result from the genetic mutation of ALDOB was not reported so far.
Mutations

<table>
<thead>
<tr>
<th>ALDOB (aldolase B, fructose-bisphosphate)</th>
<th>Peng SY, Hsu HC</th>
</tr>
</thead>
</table>

Missense mutations

c.21>T>C	p.M1T	ALI et al. 1993
c.170>G>C	p.R57P	DAVID-SPIRAL et al. 2008
c.343>T>C	p.C115R	BROOKS and TOLAN 1994
c.441>T>C	p.W148R	ALI and COX 1995
c.448>G>C	p.A150P	CROSS et al. 1988
c.532>T>C	p.C178R	SANTER et al. 2005
c.770>T>C	p.L257P	ALI et al. 1994a
c.851>T>C	p.L284P	SANTER et al. 2005
c.910>C>T	p.R304W	SANTAMARIA et al. 1996
c.932>T>C	p.L311P	DAVID-SPIRAL et al. 2008
c.1005>C>G	p.N335K	CROSS et al. 1990b
g.102466>G>T	p.V232F	ESPOSITO et al. 2004
g.102557>T>C	p.L299P	ESPOSITO et al. 2004
g.6946>G>C	p.I174T	ESPOSITO et al. 2004

Nonsense mutations

c.102>C>T	p.R4X	ALI et al. 1994b
c.178>C>T	p.R66X	ALI et al. 1994b
c.452>C>G	p.Y174X	GRUCHYA et al. 2006
c.612>C>A	p.Y204X	ALI et al. 1993
c.612>G>C	p.Y204X	ALI et al. 1993
c.817>C>T	p.Q111X	ESPOSITO et al. 2004

Deletions

c.146delT	p.V49GfsX27	DAVID-SPIRAL et al. 2008
c.250delC	frameshift	GRUCHYA et al. 2006
c.345>372del28bp	frameshift	SANTER et al. 2005
c.357delAAAC	p.N120KfsX30	DAZZO and TOLAN 1990
c.360>363delAAA	p.N120KfsX30	DAZZO and TOLAN 1990
c.479>482delAACA	frameshift	CHI et al. 2007
c.841>842delAC	frameshift	SANTER et al. 2005
c.865>963delC	frameshift	CROSS et al. 1994a
c.953>994del42bp	p.A318fs32del	DAVID-SPIRAL et al. 2008
c.1044>1049delTTTCTGinsACACT	frameshift	SANTER et al. 2005
g.7516>9165del	p.L1109fsS160del	CROSS and COX 1990
g.9912>10836del	p.N181fsG267del	CROSS and COX 1990
IVS2-1GedeGTA	p.G387fs9del	CROSS and COX 1990
IVS8-1GedeGGCTAAGinsG	p.A334fsN335del	BROOKS et al. 1991

Insertions

| c.313>314ins2bp | p.A.318fs32del | GRUCHYA et al. 2006 |

Mutations in the splicing region

c.112+1G>A	deduced splicing defect	DAVID-SPIRAL et al. 2008
c.113+1G>A	loss splice site	SANTER et al. 2005
c.325+1G>C	deduced splicing defect	ESPOSITO et al. 2004
c.625+1G>A	deduced splicing defect	ALI et al. 1994
c.625+1G>A	deduced splicing defect	ESPOSITO et al. 2004
c.799+2T>A	loss splice site	SANTER et al. 2005
c.922>925delGTA	splicing defect	GRUCHYA et al. 2006
IVS5+1G>C	splicing mutation	ALI et al. 1996
IVS6-1G>A	splicing mutation	ALI et al. 1994b

Types of mutation related to Hereditary fructose intolerance (HFI). c. means cDNA coding region mutations, g. means genome mutations and p. refers to protein change after nucleotide mutation. IVS (intervening sequence) refers to introns.
Hepatocellular carcinoma (HCC)

Hereditary fructose intolerance (HFI)

Disease
An autosomal recessive disease that results in the inability to metabolize fructose and related sugars. When fructose, sucrose, or sorbitol was taken from the diet, affected patients suffer from vomiting, abdominal pain, hypoglycemia. Continued ingestion of noxious sugars leads to hepatic and renal injury, which eventually leads to liver cirrhosis and growth retardation.

Prognosis
Complete exclusion of fructose, sucrose, and sorbitol from the diet results in dramatic recovery if liver and kidney damage is not irreversible.

Oncogenesis
Not found.

ALDOB (aldolase B, fructose-bisphosphate)

Peng SY, Hsu HC

Szpirer C, Rivière M, Szpirer J, Genet M, Drèze P, Islam MQ, Levag A. Assignment of 12 loci to rat chromosome 5: evidence that this chromosome is homologous to mouse chromosome 4 and to human chromosomes 9 and 1 (1p arm). Genomics. 1990 Apr 6(4):679-84

This article should be referenced as such: