t(14;19)(q32;q13) IGH/CEBPA

Jean-Loup Huret

Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France (JLH)

Published in Atlas Database: May 2008

Online updated version : http://AtlasGeneticsOncology.org/Anomalies/t1419q32q13ALLID1335.html
DOI: 10.4267/2042/44477

This article is an update of :

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.

© 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Note
This abnormality is cytogenetically identical but molecularly distinct from the t(14;19)(q32;q13) seen in chronic lymphoid leukaemia (CLL) and other chronic B-cell lymphoproliferative disorders, which results in the juxtaposition of BCL3 with IGH on the der(14) and subsequent over expression of the BCL3 protein.

G-banded metaphase showing the t(14;19)(q32;q13). The derivative chromosomes 14 and 19 are arrowed (bottom) G-banded karyogram showing the t(14;19)(q32;q13) and a add(15q) (top).

Clinics and pathology

Disease
Acute lymphoblastic leukaemia (ALL).

Phenotype/cell stem origin
B-lineage immunophenotype and FAB L1, mostly CD10+: B-cell precursor acute lymphoblastic leukaemia (BCP-ALL).

Epidemiology
Rare, with only 28 cases reported to date (Heerema et al., 1985; Frigogina et al., 1988; Pui et al., 1993; Andreasson et al., 2000; Robinson et al., 2004; Chaparo et al., 2006; Akasaka et al., 2007). The estimated incidence in childhood and adult ALL is <1%. Among the reported cases there appears to be a female pre-dominance (9M/19F) which is unusual for ALL. The age range of patients is 5 to 76 years with a median of 19 years. This abnormality is most often found in adolescents and young adults.

Clinics
Typically, patients with this abnormality have low white cell count of 9/L, but 10% of patients present with a WBC above 50 x 10^9/L.

Prognosis
It is difficult to assess the true prognosis of patients with this abnormality given its rarity, however initial data suggest that the prognosis is better than expected for patients of a similar age (see Figure 2).
Cytogenetics

Note
This balanced translocation can usually be identified by G-banding alone. The breakpoint on chromosome 14 is consistently given as 14q32; however the breakpoint on chromosome 19 has, in the past, been more variably attributed, from q11 to q13. It is to be noted, however, that the gene involved on chromosome 19, CEBPA, lies at 38,482,776 bp from pter, very close to the q12 band limit.

Cytogenetics morphological
The t(14;19) has been described as the sole abnormality in 12 out of 28 cases, and is more frequently accompanied by additional structural and/or numerical abnormalities; +21 (acquired) was found in three cases, +6 in two cases. A t(9;22)(q34;q11) was found in one case, a trisomy 8 in one case. This abnormality has been reported in a single case with Down syndrome. In a closely related translocation, the t(8;14)(q11;q32) with CEBPD/IGH involvement, more than 1/4 of cases were Down syndrome patients.

Genes involved and proteins

Note
The involvement of the IGH gene located at 14q32 has been demonstrated via FISH using the LSI IGH Dual Colour Break Apart Rearrangement Probe in all cases tested. Metaphase and interphase FISH using probes flanking the BCL3 gene have ruled out the involved of this gene; thus distinguishing it from the cytogenetically identical translocation t(14;19)(q32;q13) seen in CLL and other chronic B-cell lymphoproliferative disorders.

IGH
Location
14q32

CEBPA
Location
19q13
Note
Alternatively, CEBPG can be involved instead of CEBPA (one case so far described). It is unknown if they bear the same prognosis, as they differ in their N-term.

DNA/RNA
CEBPA is a single-exon gene, CEBPG also.

Protein
DNA-binding protein. CCAAT enhancer-binding protein (CEBP) transcription factors are a family of 6 multifunctional basic leucine zipper (bZIP) transcription factors. The 4 other CEBPs are: CEBPB (20q13), CEBPD (8q11), CEBPE (8q11), all three equally implicated in leukemias, and DDIT3/CHOP/CEBP zeta (12q13), so far known to be involved in solid tumours (liposarcoma). These transcription factors play a key role in cellular differentiation, in particular in the control of myeloid differentiation. CEBPA is composed of an N-term transactivation domain, a negative regulatory domain, a DNA-binding basic motif, and a leucine-zipper domain in C-term. CEBPA mRNA is translated into two major proteins, p42CEBPA and p30CEBPA. The 30 kDa protein lacks the transactivating domain, and inhibits DNA binding and transactivation by p42CEBPA. CEBPA is essential for the lineage specific differentiation of myelocytic haematopoietic precursors into mature neutrophils. CEBPG only contains a DNA-binding basic motif, and a leucine-zipper domain (Ramji et al., 2002; Nerlov et al., 2007).

Germinal mutations
CEBPA has been found mutated in a familial acute myeloid leukemia (Smith et al., 2004).

Somatic mutations
10% of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) cases exhibit a mutation in CEBPA. It seems to bear a good prognosis.

Result of the chromosomal anomaly

Fusion protein
Oncogenesis
Overexpression of the CEBP gene.

References


This article should be referenced as such: Huret JL. t(14;19)(q32;q13) IGH/CEBPA. Atlas Genet Cytogenet Oncol Haematol. 2009; 13(5):378-380.