Leukaemia Section
Mini Review

\textbf{t(4;10)(q12;p11)}

Jean-Loup Huret

Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France (JLH)

Published in Atlas Database: March 2008

Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0410q12p11D1440.html
DOI: 10.4267/2042/44438

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Clinics and pathology

Disease
Myeloproliferative syndrome with hypereosinophilia.

Epidemiology
Only one case to date, a 54-year old male patient.

Evolution
Complete remission could not be obtained with hydroxyurea. Following the identification of the PDGFRα hybrid gene, imatinib was started, and the patient entered complete cytogenetic remission (CR). The patient is still in RT-PCR CR after 18 months.

Genes involved and proteins

PDGFRα

Location
4q12

Protein
Composed of an extracellular domain, a transmembrane domain, an intracellular domain; receptor tyrosine kinase; forms homodimer, and heterodimer with PDGFRβ; dimerization induces kinase domain activation, leading to the activation of intracellular signalling pathways (Kawagishi et al., 1995).

Somatic mutations
Hybrid genes between various partners and PDGFRα occur in chronic myeloid leukaemia-like diseases with eosinophilia, mostly chronic eosinophilic leukemia (CEL), a clonal hypereosinophilic syndrome. PDGFRα partners known so far are: STRN (2p24) (Curtis et al., 2007), FIP1L1 (4q12) (Cools et al., 2003; Pardanani et al., 2004), CDK5RAP2 (9q33) (Walz et al., 2006), KIF5B (10p11) (Score et al., 2006), ETV6 (12p13) (Curtis et al., 2007), and BCR (22q11) (Baxter et al., 2002). Mutations of platelet-derived growth factor receptor-alpha (PDGFRα) are observed in a subset of gastrointestinal stromal tumors (GISTs) (Heinrich et al., 2003). Tumours with PDGFRα involvement are responsive to imatinib therapy (Cools et al., 2003; Debie-Rychter et al., 2004).

KIF5B

Location
10p11

Protein
Composed of a N-terminal globular domain that hydrolyzes ATP and binds microtubule, a central alpha-helical coiled-coil domain (dimerization domain); and a C-terminal domain that interacts with other proteins, vesicles and membranous organelles. Kif5B is involved in microtubule-based polarized vesicular transport to the apical membrane in polarized axonal transport in neurons (Nakata and Hirokawa, 2003; Jacobson et al., 2007; Jaulin and Mostov, 2007). The role of the complex of syntaxin-1-syntabulin-KIF5B in axonal transport has been established (Cai et al., 2007). Kif5B and Kifc1 interact in motility and processing of early endocytic vesicles (Nath et al., 2007). KIF5B has been shown to be essential for axonal transport of mitochondria. KIF5B associates with the kinesin-binding domain (KBD) of RanBP2 to determines mitochondria localization (Cho et al., 2007). JNK forms a complex with KIF5B and β-tubulin-III in neurites, and TNF disturbs axonal transport of mitochondria via JNK (Stagi et al., 2006).

Result of the chromosomal anomaly

Hybrid gene

Description
In frame fusion of KIF5B exon 23 to PDGFRα exon 12; no reciprocal PDGFRα-KIF5B product.
Fusion protein

Description
156 kDa protein of 1372 amino acids; Composed of the N-terminal globular domain and the central alpha-helical coiled-coil domain (dimerization domain) of KIF5B, fused to the kinase domain of PDGFRA. It is likely that the dimerization domain induces constitutive activation of the kinase domain.

References

Nath S, Bananis E, Sarkar S, Stockert RJ, Sperry AO, Murray JW, Wolkoff AW. KIF5B and KIF1 interact and are required for motility and fission of early endocytic vesicles in mouse liver. Mol Biol Cell. 2007 May;18(5):1839-49

This article should be referenced as such: