Gene Section

Mini Review

TNN (tenascin N)

Martin Degen, Ruth Chiquet-Ehrismann

Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland

Published in Atlas Database: February 2008

Online updated version: http://AtlasGeneticsOncology.org/Genes/TNNID44209ch1q25.html

DOI: 10.4267/2042/38603

This work is licensed under a Creative Commons Attribution-Non-commercial-No Derivative Works 2.0 France Licence. © 2008 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Hugo: TNN

Other names: TN-W; TN-N

Location: 1q25.1

Local order: tail to tail configuration next to the tenascin-R gene (TNR)

DNA/RNA

Description

The tenascin-W gene consists of 19 exons spanning 80.21 kb of genomic DNA.

Transcription

5005 bp mRNA transcribed in centromeric to telomeric orientation on the forward strand; 3885 bp open reading frame.

The transcript starts with a non-coding exon followed by exon 2, which contains the start codon (ATG) for translation initiation. Exon 1 is located 9448 bp upstream of exon 2.

The distribution of the 19 exons is shown in the upper part, whereas the lengths of exons and introns are indicated in the lower part.
Schematic representation of human tenasin-W is shown.

Protein

Description

Tenasin-W is built up of different structural motifs arranged in a linear order, namely amino-terminal heptad repeats, 3.5 EGF-like repeats, 9 FN III domains, and a carboxyl-terminal fibrinogen globe.

The primary sequence encodes a protein of 1294 amino acids. Amino acids 1-16 represent the secretion signal, amino acids 150-254 constitute the EGF-like repeats, and amino acids 255-1054 account for the FNIII domains. FN III domain number 3 was subject to duplication as indicated by the dark boxes in the schematic representation. Tenasin-W is known to form hexameric structures called hexabrachions.

SDS-Page analysis revealed a molecular weight of 160kDa per subunit under reducing conditions. So far, there is no evidence for alternative splicing.

Expression

Initially, tenasin-W was identified in zebrafish where it was expressed in migrating cells of sclerotomal and neural crest origin. More recently, tenasin-W was characterized in mouse and chicken during embryogenesis as well as in the adult organism. These studies revealed that tenasin-W, similar to tenasin-C, shows tight regulation during development and in the adult. Immunohistochemistry showed prominent expression in the developing and adult metanephric kidney, developing and adult periosteum around ribs, and transient expression in smooth muscles of the developing gut, often but not always overlapping with tenasin-C expression. Furthermore, tenasin-W is highly expressed in the tumor stroma in different solid tumors.

Tenasin-W is most likely produced and secreted by mesenchymal cells such as fibroblasts and osteoblasts. Known stimuli that induce tenasin-W expression include so far tumor necrosis factor alpha (TNFalpha) and bone morphogenetic protein 2 (BMP2).

Localisation

Extracellular matrix.

Function

Adhesion: Tenasin-W is an adhesive substratum for some cells (osteoblasts, fibroblasts), while others cannot attach and spread on tenasin-W.

Migration: Tenasin-W stimulates the migratory behavior of cells.

Homology

Tenasin-W belongs to the tenasin family, which is a highly conserved family of large oligomeric extracellular matrix proteins. Vertebrate genomes harbor four tenasin genes, which have been termed tenasin-C, tenasin-XB (TNXB), tenasin-R, and tenasin-W.

Human tenasin-W shows high sequence conservation with mouse tenasin-W.

Implicated in

Breast cancer

Oncogenesis

Tenasin-W is highly expressed in a large fraction of breast cancer patients whereas it is not detectable in normal human mammary tissue. Expression in tumors correlated with tumor grade. There is statistically significant higher mean expression of tenasin-W in low-grade tumors (Grade1/Grade2) compared to high-grade tumors (Grade3).

Tenasin-W is produced in the stromal compartment, most likely by cancer-associated fibroblasts, which are part of a tumor permissive microenvironment that facilitates tumor cell migration. In vitro, presence of tenasin-W stimulated breast cancer cell migration.

Benign tumors as well as carcinomas do express tenasin-W.

Furthermore, tenasin-W is elevated in sera of breast cancer patients compared to that of healthy volunteers.
Tenascin-W is postulated to be a marker for conversion of the normal physiological stroma to an activated stroma in breast cancer.

Colorectal cancer

Oncogenesis

Tenascin-W is highly expressed in colorectal cancer patients whereas it is not detectable in the normal colon mucosa. Furthermore, mean tenascin-W level in sera of colorectal cancer patients is statistically increased compared to that in sera of healthy volunteers. Follow-up studies of colorectal cancer patients revealed that 4 out of 5 patients who developed tumor recurrence after treatment showed high tenascin-W levels in their sera. Thus, tenascin-W might have prognostic value as a serum tumor marker.

References

This article should be referenced as such: