CDC73 (cell division cycle 73, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae))

Leslie Farber, Bin Tean Teh

Laboratory of Cancer Genetics, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA

Published in Atlas Database: February 2008

Online updated version: http://AtlasGeneticsOncology.org/Genes/CDC73D181ch1q31.html

DOI: 10.4267/2042/38594

This work is licensed under a Creative Commons Attribution-Non-commercial-No Derivative Works 2.0 France Licence.

© 2008 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Hugo: CDC73
Other names: C1orf28; FLJ23316; HPT-JT; HRPT2
Location: 1q31.2
Note: Defects in CDC73 are the cause of hyperparathyroidism-jaw tumor syndrome. Mutations in CDC73 are also a cause of parathyroid carcinoma (see below).

DNA/RNA

Description
17 exons (all coding).

Transcription
CDC73 encodes a 2.7 kb mRNA with a 1596 bp ORF. The transcript has been detected in all tissues tested to date.

Protein

Description
531-amino acid protein (64 kD); termed parafibromin.

Expression
Ubiquitously expressed.

Localisation
Nuclear, bipartite nuclear localization signal.

Function
CDC73 is a tumor suppressor gene encoding a protein called parafibromin. Parafibromin is a member of the human RNA polymerase II-associated complex, Paf1.

The human Paf1 complex is composed of parafibromin, LEO1, PAF1, and CTR9. Parafibromin's interaction with this complex is dependent on its C-terminal domain, which is deleted in ca. 80% of clinically relevant mutations.

Homology

Parafibromin shares 54% identity and 67% similarity with the D. melanogaster ortholog and 25% identity and 45% similarity with the C. elegans ortholog. There were no homologies to known protein domains, but moderate identity (32%) and similarity (54%) to the S. cerevisiae ortholog, Cdc73.

Mutations

Germinal
Various types of mutations often leading to inactivation of protein.

Somatic
Various somatic inactivating mutations found in sporadic parathyroid carcinoma.

Implicated in

Hyperparathyroidism-Jaw Tumor Syndrome (HPT-JT)

Disease
HPT-JT is an autosomal dominant, multiple neoplasia syndrome.

Oncogenesis
HPT-JT syndrome is primarily characterized by hyperparathyroidism due to parathyroid tumors.
Thirty percent of individuals with HPT-JT also develop ossifying fibromas, primarily of the mandible and maxilla, which are distinct from the brown tumors associated with severe hyperparathyroidism. Kidney lesions also occur in HPT-JT as bilateral cysts, renal hamartomas or Wilms tumors.

Familial isolated hyperthyroidism

Disease

Familial isolated primary hyperparathyroidism is an autosomal dominant disorder that can represent an early stage of either the multiple endocrine neoplasia type 1 (MEN1) or hyperparathyroidism-jaw tumor (HPT-JT) syndromes; or alternatively caused by a distinct entity involving another locus.

Sporadic parathyroid carcinoma

Disease

These cancers characteristically result in more profound clinical manifestations of hyperparathyroidism than do parathyroid adenomas. Parathyroid carcinomas cause hyperparathyroidism. The hyperparathyroidism is usually severe, with high serum calcium level, severe bone disease, and renal stones.

Prognosis

5-years survival rate is between 50% and 70%.

Oncogenesis

Loss of parafibromin expression strongly predicts parathyroid malignancy.

Sporadic renal tumors

Cytogenetics

Loss of heterozygosity (LOH) of HRPT2 was found in clear cell, papillary, chromophobe renal cell carcinomas, oncocytomas, and Wilms tumors. In addition, two novel HRPT2 point mutations were detected in clear cell carcinoma and Wilms tumor.

References

This article should be referenced as such: