t(2;11)(q37;q23) in AML

Cecília Correia, Manuel R Teixeira

Department of Genetics, Portuguese Oncology Institute, Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto, Portugal

Published in Atlas Database: September 2007

Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0211q37q23ANLLID1457.html

DOI: 10.4267/2042/38585

This work is licensed under a Creative Commons Attribution-Non-commercial-No Derivative Works 2.0 France Licence.

© 2008 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

t(2;11)(q37;q23) by G-banding and FISH with dual-color, break-apart MLL probe; Cecilia, Manuel R Teixeira (left); partial GTG-banded karyotype of t(2;11)(q37;23) and FISH analysis using probe LSI MLL DCBA demonstrating a $11\text{q23 MLL rearrangement with a fusion signal on the normal chromosome } 11$, a split 5’MLL signal on der(11) and a 3’MLL signal on der(2); courtesy Arjan Buijs and Ellen van Binsbergen (right).
Clinics and pathology

Disease
Rare type of acute non lymphocytic leukemia (ANLL) and therapy-related ANLL.

Phenotype / cell stem origin
No specific AML FAB sub-type (two cases M4, one M2, one M5a and one NOS).

Etiology
Either de novo or therapy-related (prior cancer is variable: breast cancer, non-Hodgkin lymphoma and LLA).

Epidemiology
Five cases known in the literature; four adults and one child, sex ratio 2M/3F; (age range 14.4-76).

Prognosis
Two cases showed poor survival, 9 and 17 months respectively, one case achieved remission after stem cell transplantation. The prognosis may be likely to be comparable with that of other entities with 11q23/MLL involvement, and worse in therapy related leukemias.

Genes involved and Proteins

SEPT2
Location: 2q37
DNA/RNA
The SEPT2 gene has 14 exons.
SEPT2 has four types of transcripts with 3.6 kb, 3.5 kb, 3.4 kb and 3.3 kb encoding the same protein, as a result of alternative splicing.

Protein
SEPT2 belongs to an evolutionarily conserved family of genes that encode a P loop-based GTP-binding domain flanked by a polybasic domain and (usually) a coiled-coil region, and assemble into homo- and hetero-oligomers and filaments with key roles in cell division cytoskeletal dynamics and secretion. The SEPT2 gene codes for a protein with 361 amino acids and a molecular weight of 41.5 kDa.

SEPT2 was identified as a gene expressed in early embryonic mouse brain and down-regulated during development. It is ubiquitously expressed in cell lines and tissues with the highest protein levels found in brain tissue.

The SEPT2 protein, like other septin family members, is thought to be cytoplasmic. SEPT2 co-localises with actin filaments in interphase cells, and in dividing cells concentrates at the cleavage furrow.

SEPT2 is a multifunctional protein that was shown to be required for cytokinesis and to bind actin and associate with focal adhesions. Recent data support the idea that SEPT2 can have a role in chromosome congression and segregation. Additional functions have also been suggested; for instance, in rat brain lysates SEPT2 is part of a multi-septin complex that interacts with the exocyst complex, which plays a role in secretion and neurite outgrowth. SEPT2 has also been localised to senile plaques of brains in patients with Alzheimer’s disease suggesting a role in neurodegeneration.

The SEPT2 protein belongs to an evolutionarily family of proteins with at least 14 members and shares a very high homology with septin 1, septin 4 and septin 5.

MLL
Location: 11q23
DNA/RNA
37 exons, spanning over 100 kb.
In a centromeric to telomeric direction; 13 and 15 kb; coding sequence: 11.9 kb.

Protein
3969 amino acids; 431 kDa; contains from N-term to C-term 3 AT hooks homologous to high mobility group proteins HMGAI and HMGAI2, binding to the minor groove of DNA; 2 speckled nuclear localisation signals; 2 repression domains RD1 and RD2: RD1 or CXXC: cystein methyl transferase, binds CpG rich DNA, has a...
transcriptional repression activity; RD2 recruits histone
desacylases HDAC1 and HDAC2; 3 plant
toothed domains (cystein rich zinc finger domains, with
homodimerization properties), 1 bromodomain (may
bind acetylated histones), and 1 plant homeodomain;
these domains may be involved in protein-protein
interaction; a FYRN and a FRYD domain; a
transactivation domain which binds CBP; may
acetylates H3 and H4 in the HOX area; a SET domain;
methyltransferase; methylates H3, including histones
in the HOX area for allowing chromatin to be open to
transcription. MLL is cleaved by taspase 1 into 2
proteins before entering the nucleus: a p300/320 N-
term protein called MLL-N, and a p180 C-term protein,
called MLL-C. The FYRN and a FRYD domains of
native MLL associate MLL-N and MLL-C in a stable
complex; they form a multiple complex with
transcription factor TFIIID.

Results of the chromosomal anomaly

Hybrid gene

Description

MLL-SEPT2. MLL exon 6 or 7 fused with SEPT2 exon 3.

<table>
<thead>
<tr>
<th>Anno</th>
<th>MLL</th>
<th>SEPT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5 6</td>
<td>3 4 5 6 7</td>
</tr>
<tr>
<td>B</td>
<td>5 6</td>
<td>7 3</td>
</tr>
</tbody>
</table>

Fusion protein

Description

AT hook, SNL-1, SNL-2 and DNA methyltransferase
domains from MLL fused to almost the entire open-
reading frame of SEPT2, except for the first three
aminoacids.

References

DeLozier-Blanchet CD, Cabrol C, Werner-Favre C, Beris P,
Engel E. Translocation 2;11 and other significant chromosome
changes in acute monoblastic leukemia (M5) with clonal
evolution: sequential clinical and cytogenetic studies. Cancer

Winick NJ, McKenna RW, Shuster JJ, Schneider NR, Borowitz
MJ, Bowman WP, Jacaruso DJ, Kamen BA, Buchanan GR.
Secondary acute myeloid leukemia in children with acute
lymphoblastic leukaemia treated with etoposide. J Clin Oncol

Fischer K, Fröhling S, Scherer SW, McAllister Brown J, Scholl
C, Stilgenbauer S, Sui LC, Lichter P, Döhner H. Molecular
cytogenetic delineation of deletions and translocations
involving chromosome band 7q22 in myeloid leukemias. Blood
1997;89(6):2036-2041.

Cerveira N, Correia C, Bizarro S, Pinto C, Lisboa S, Mariz JM,
Marques M, Teixeira MR. SEPT2 is a new fusion partner of
MLL in acute myeloid leukemia with t(2;11)(q23;q23).
Oncogene 2006;25(45):6147-6152.

van Binsbergen E, Weerdt O, Buifs A. A new subtype of MLL-
SEPT2 fusion transcript in therapy-related acute myeloid
leukemia with t(2;11)(q37;q23): a case report and literature

This article should be referenced as such:

Correia C, Teixeira MR. t(2;11)(q37;q23) in AML. Atlas Genet