NKX2-2 (NK2 homeobox 2)

Stephen L Lessnick, Leah A Owen

Department of Oncological Sciences, University of Utah School of Medicine, Center for Children, Huntsman Cancer Institute, and Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, Utah, USA

Published in Atlas Database: January 2008

DOI: 10.4267/2042/38573

This work is licensed under a Creative Commons Attribution-Non-commercial-No Derivative Works 2.0 France Licence.

© 2008 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Hugo: NKX2-2
Other names: NKX2.2; NKX2B
Location: 20p11.22

DNA/RNA

Description
Start- 21,439,648 base pairs from p arm terminus; end-21,442,699 base pairs from p arm terminus; size- 3,051 bases; orientation- minus strand.

Protein

Description
273 amino acids; 30133 Da. NKX2-2 is a member of the NK2 family of homeobox transcription factors. It has known roles in the development of the CNS as well as pancreatic beta cell differentiation. In the CNS NKX2-2 is known to be activated by SHH signaling which is important for its initial role in ventral patterning. NKX2-2 expression has additionally been shown to be critical for the differentiation of oligodendrocytes, and in fact necessary for this process to occur. In both instances, NKX2-2 mediated transcriptional repression is both necessary and sufficient for these processes to occur. Regulation of NKX2-2 expression in the pancreas is less well understood. NKX2-2 knock-out mice die soon after birth from diabetic complications as a result of a lack of fully differentiated pancreatic beta cells. While NKX2-2 mediated transcriptional repression has been demonstrated to be necessary and sufficient for its role in beta-cell differentiation, it remains unclear whether NKX2-2 mediated transcriptional activation is important for NKX2-2 function in adult beta-cells.

Expression
V3 neural progenitors; oligodendrocyte precursor cells; precursor and adult pancreatic beta cells.

Localisation
Nuclear.

Function
NKX2-2 is a transcription factor.

Homology
NKX2-2 shares homology with other members of the NK2 family of transcription factors most notably in the TN transcriptional repression, DNA binding homeodomain, and specific domain regions.

Schematic of NKX2-2 functional domains. The positions of the transcriptional repressor domain (TN), the homeodomain (HD), the NK2-specific domain (SD), and the transcriptional activation domain (TAD) are shown.
NKX2-2 (NK2 homeobox 2)

Lessnick SL, Owen LA

Schematic diagram of wild-type EWS, wild-type FLI, and the EWS/FLI fusion transcripts.

Implicated in

Ewing's sarcoma

Prognosis

Roughly 50% survival at 5 years for Ewing’s sarcoma.

Cytogenetics

Ewing's sarcoma cells harbor the characteristic translocation t(11;22)(q24;q12) in roughly 90% of cases.

Hybrid/Mutated Gene

t(11;22)(q24;q12) fuses the 5' region of the EWSR1 gene on chromosome 22 with the 3' portion of the FLI-1 gene on chromosome 11.

Abnormal Protein

The translocation fusion product is termed EWS/FLI.

Oncogenesis

NKX2-2 is up-regulated in Ewing's sarcoma by the EWS/FLI translocation protein product. NKX2.2 expression is necessary for the oncogenic phenotype of Ewing's sarcoma cells.

References

Sussel L, Kalamaras J, Hartigan-O’Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, German MS. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 1998;125:2213-2221.

This article should be referenced as such:

Atlas Genet Cytogenet Oncol Haematol. 2008;12(5) 376