t(6;7)(q23;q34)
Emmanuelle Clapier, Jean Soulier

Genome Rearrangements and Cancer Group, Hematology Laboratory and U728 INSERM, Hopital Saint-Louis and Paris 7 University, Paris, France

Published in Atlas Database: July 2007
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0607q23q34ID1465.html
DOI: 10.4267/2042/38533
This work is licensed under a Creative Commons Attribution-Non-commercial-No Derivative Works 2.0 France Licence. © 2008 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

R-band analysis. Partial karyotype showing t(6;7)(q23;q34).

Clinics and pathology

Disease
T cell acute lymphoblastic leukemia (T-ALL).

Phenotype / cell stem origin
T cell precursor.

Epidemiology
Less than 5% among a series of non selected adult and pediatric T-ALLs (n = 3 out of 92). Six cases were described, all of them children, and 5 out of 6 being under 3 years old (1.1, 1.3, 1.8, 2.5, and 2.9 years old, respectively), which is very young for T-cell leukemia. The t(6;7) translocation could therefore be relatively common in this very low range of age.

Cytology
Lymphoblasts.

Prognosis
The prognosis is yet to be evaluated.

Cytogenetics

Cytogenetics morphological
t(6;7)(q23;q34) may be barely detectable by chromosome banding technics alone.
Cytogenetics molecular
Involvement of the TCRB locus and the MYB locus can be demonstrated using flanking FISH probes.

Genes involved and Proteins

TRB
- **Location:** 7q34
- **Protein**
 - T-cell receptor beta chain.

C-MYB
- **Location:** 6q23.3
- **DNA / RNA**
 - Spans over 38 kb, 15 exons (and additional alternative exons), mRNA 3.3 kb.
- **Protein**
 - v-myb myeloblastosis viral oncogene homolog.
 - Transcription factor: 640 amino acids.

AHI-1
- **Location:** 6q23.3
- **DNA / RNA**
 - Spans over 214 kb, 28 exons (and additional alternative exons), mRNA 5.5 kb.
- **Protein**
 - Jouberin (Abelson helper integration site 1 protein homolog) (AHI-1). 1196 amino acids including one SH3 domain and WD repeats.

Results of the chromosomal anomaly

Hybrid gene
- **Note:** No fusion gene
- The t(6;7)(q23.3;q34) translocation results in juxtaposition of TRB regulatory sequences to the MYB-AHI1 locus. It results in deregulated expression of C-MYB, as demonstrated by skewed allelic expression.

Fusion protein

Oncogenesis

C-MYB is a transcription factor involved in hematopoiesis. In T-cell differentiation, discrete threshold levels of MYB activity regulate transition through distinct stages, suggesting that a deregulated expression could disturb the maturation process and play a role in oncogenesis.

A potential role of AHI1 deregulation as a cofactor has to be evaluated.

Of note, the same locus at 6q23.3 is also involved in short tandem duplications of a about 230 kb genomic region which includes the C-MYB gene (about 10% T-ALL in children and adults). This somatic abnormality can be detected by array-CGH, genomic Q-PCR or fiber-FISH, but not or hardly by standard metaphasic or interphasic FISH.

References

This article should be referenced as such: