HYAL1 (hyaluronoglucosaminidase 1)

Demitrios H Vynios

Department of Chemistry, University of Patras, 26500 Patras, Greece

Published in Atlas Database: October 2007
DOI: 10.4267/2042/38523

This work is licensed under a Creative Commons Attribution-Non-commercial-No Derivative Works 2.0 France Licence.
© 2008 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Hugo: HYAL1
Other names: EC 3.2.1.35; HYAL-1; NT6; LUCA1; LUCA-1; FUS2; Hyaluronidase-1 precursor; Hyaluronoglucosaminidase-1; Hs.75619; MGC45987
Location: 3p21.3
Local order: The gene of Hyal1 is tightly clustered with HYAL-2 and HYAL-3. The gene for Hyal-2, HYAL2, the earliest known lysosomal hyaluronidase, resides immediately centromeric to HYAL1.
Note: The HYAL1 gene was identified as identical with LUCA-1, a candidate tumour suppressor gene, especially for tobacco-related cancers.

DNA/RNA

Description
The HYAL1 gene contains three exons and spans 12,492 bases (start: 50,312,324 bp to end 50,324,816 from 13pter) oriented at the minus strand.

Transcription
Eight alternatively spliced transcript variants of this gene encoding six distinct isoforms have been described. The longest transcript has a length of 2,518 bps, however it is not translated to protein, since, by retaining intron 1 (occurring within exon 1), it has a number of stop codons. The longest transcript that produces active HYAL1 has a length of 2075 bps.

Protein

Note: HYAL1 is a secreted somatic tissue hyaluronidase, and the predominant hyaluronidase in human plasma. Although HYAL1 is predominantly secreted, it has an acid pH optimum in vitro. HYAL1 can degrade high molecular weight hyaluronan to small oligomers, primarily to tetrasaccharides, whereas HYAL2 (the other major human hyaluronidase) high molecular mass hyaluronan to an approximately 20 kDa product (approximately 50 saccharide units).

Description
Size: 435 amino acids; Molecular mass: 48368 Da. The enzyme belongs to the group of carbohydrate-active enzymes (http://www.cazy.org/CASy), termed glycosyl hydrolase 56 family.

Expression
HYAL1 is highly expressed in liver, kidney and heart and weakly expressed in lung, placenta and skeletal muscle. No expression is detected in adult brain. Isoform 1 is expressed only in bladder and prostate cancer cells, G2/G3 bladder tumor tissues and lymph node specimens showing tumor invasive tumors cells. Isoform 3, isoform 4, isoform 5 and isoform 6 are expressed in normal bladder and bladder tumor tissues. HYAL1 expression has been described in squamous cell carcinoma, in small cell lung cancer and glioma lines.

Localisation
It is a secreted enzyme found in plasma and it is also present in lysosomes.
HYAL1 (hyaluronoglucosaminidase 1)

Function

It is a hydrolytic enzyme (endo-beta-acetyl-D-hexosaminidase) with optimum pH about 3.7, acting on hyaluronic, chondroitin and chondroitin sulphate. It possesses also transglycosidase activity using hyaluronic and chondroitin sulphate or chondroitin as substrates. This reaction is not well understood, and the precise enzymatic mechanism is not known.

Homology

The enzyme possesses 70-80% homology to orthologue hyaluronidases, 40% homology to parologue hyaluronidases of the human and high homology with HYAL1 of other species.

Mutations

Somatic

There are not extended reports regarding mutations of HYAL1 gene. The patient with hyaluronidase deficiency was a compound heterozygote for two mutations in the HYAL1 gene: a 1412G-A mutation that introduced a nonconservative amino acid substitution (glu268 to lys) in a putative active site residue, and a complex intragenic rearrangement, 1361del37ins14, that resulted in a premature termination codon. In addition, the mutated HYAL1 gene has a markedly different expression pattern than the normal one.

Implicated in

Mucopolysaccharidosis type IX (MPS9)

Note: Defects in HYAL1 are the cause of mucopolysaccharidosis type IX, also called hyaluronidase deficiency.

Disease

The clinical features are periarticular soft tissue masses, mild short stature and acetabular erosions, absence of neurological or visceral involvement and high hyaluronic concentration in the serum.

Cancer

Note: HYAL1 is inactivated in most lung cancers in a conventional manner, by loss of heterozygosity or by homozygous deletion, at the DNA level. It is also inactivated in many head and neck carcinomas that are tobacco-related by aberrant splicing of the mRNA, so that only the nontranslatable form is transcribed. In addition, the expression of an alternative spliced isoform resulting in active enzyme may negatively regulate bladder tumor growth, infiltration, and angiogenesis. On the other hand, HYAL1 can function as oncogene in many cancers of the prostate and urinary tract and seems to play important role in squamous cell laryngeal carcinoma.

References

Triggs-Raine B, Salo TJ, Zhang H, Wicklow BA, Natowicz MR. Mutations in HYAL1, a member of a tandemly distributed multigene family encoding disparate hyaluronidase activities, cause a newly described lysosomal disorder, mucopolysaccharidosis IX. Proc Natl Acad Sci USA 1999;96:6296-6300.

This article should be referenced as such: