Gene Section

Mini Review

NUT (nuclear protein in testis)

Anna Collin

Department of Clinical Genetics, Lund University Hospital, 221 85 Lund, Sweden

Published in Atlas Database: February 2007

DOI: 10.4267/2042/38442

This work is licensed under a Creative Commons Attribution-Non-commercial-No Derivative Works 2.0 France Licence.

© 2007 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Hugo: NUT

Other names: DKFZp434O192; MGC138683

Location: 15q14 (position 32425358-32437221 on the chromosome 15 genomic sequence).

Note: the gene name NUT has not been approved by the HUGO Gene Nomenclature Committee.

DNA/RNA

Description

The gene consists of 7 exons that span approximately 12 kb of genomic DNA in the centromere-to-telomere orientation. The translation initiation codon and the stop codon are predicted to exon 1 and exon 7, respectively.

Transcription

The corresponding 'wildtype' mRNA transcript is 3.6 kb.

Protein

Description

The open reading frame is predicted to encode an 1127 amino acid protein with an estimated molecular weight of 120 kDa.

Expression

Northern blot analysis has indicated that the normal expression of the NUT gene is highly restricted to the testis. No investigations have yet been made at the protein level.

Localisation

Nuclear.

Function

Unknown.

Implicated in

Carcinoma with t(15;19)(q14;p13) translocation

Prognosis

Carcinoma with t(15;19) translocation is invariably fatal with a rapid clinical course when located to the midline thoracic, head and neck structures. One tumor, displaying the cytogenetic and molecular cytogenetic features of carcinoma with t(15;19) translocation, but located to the iliac bone has been reported successfully cured.

It has been suggested that a critical prognostic difference exists between BRD4-NUT/t(15;19) positive tumors and tumors where NUT is rearranged but fused to an as yet unknown partner.

Cytogenetics

t(15;19)(q14:p13) [reported breakpoints: t(15;19)(q11-15;p13)].

Hybrid/Mutated Gene

The t(15;19)(q14:p13) results in an BRD4-NUT chimeric gene where exon 10 of BRD4 is fused to exon 2 of NUT.

Abnormal Protein

The BRD4-NUT fusion is composed of the N-terminal of BRD4 (amino acids 1-720 out of 1372) and almost the entire protein sequence of NUT (amino acids 6-1127). The N-terminal of BRD4 includes bromodomains 1 and 2 and other, less well characterized functional domains.

Oncogenesis

It has been suggested that the oncogenic effect of the NUT-BRD4 fusion is caused not only by the abnormal regulation of NUT by BRD4 promoter elements but also by the consequent ectopic expression of NUT in non-germinal tissues.
Breakpoints

Note: The vast majority of reported breakpoints in carcinoma with t(15;19) translocation were assigned to band 19p13, the exception being the cytogenetic interpretation of a 19q13 breakpoint reported once. The reported breakpoints on chromosome 15 have varied (15q11-q15).

References

This article should be referenced as such: