M3/M3v acute non lymphocytic leukemia (M3-ANLL)

M3/M3v acute myeloid leukemia (AML M3/M3v)

Acute promyelocytic leukemia (APL)

Claudia Schoch

MLL Münchner Leukämielabor GmbH, Max-Lebsche-Platz 31, 81377 München, Germany

Identity

FAB criteria AML M3:
Great majority of cells are abnormal promyelocytes, with a characteristic pattern of heavy granulation. Characteristic cells contain bundles of Auer rods ('faggots').

FAB criteria AML M3v:
Minimal granulation, relative scarcity of cells with heavy granulation and cells containing multiple Auer rods. The nucleus of every cell in the peripheral blood is bilobed, multilobed or reniform, but the majority of cells are either devoid of granules or contain only a few fine azurophil granules. However, at least a few cells with all the cytoplasmic features of typical AML M3 are present. If these are overlooked, the cases are likely misdiagnosed as atypical monocytic leukemia. The atypical morphology is mainly a feature of the peripheral blood cells - bone marrow morphology is closer to that of typical AML M3.

Both subtypes show a very strong myeloperoxidase reaction and a negative reaction for non-specific esterase.

Immunophenotype:
Characteristic but not diagnostic myeloid phenotype. CD33 positive, HLA-DR is generally absent. In M3 but not M3v: characteristic light scatter pattern, strong unspecific fluorescence signal.

WHO classification:
Distinct entity in category AML with recurrent genetic abnormalities: Acute promyelocytic leukemia (AML with t(15;17)(q22;q12) (PML / RARA) and variants).

Clinics and pathology

Epidemiology
Rare: 5-8 % of ANLL, incidence higher in Spain, Italy and Latinos; occurs at any age, predominantly adults in mid-life accounting for aprox. 5% of treatment related leukemias (t-AML).

Clinics
Low WBC in AML M3, high WBC in AML M3v; frequently associated with disseminated intravascular coagulation (DIC) and hyperfibrinolysis.

Cytology
The cytomorphology of APL blasts is obviously different in the two subtypes: in AML M3, the abnormal promyelocytes show a heavy granulation and bundles of Auer rods; in AML M3v blasts have a non- or hypogranular cytoplasm or contain fine dustlike cytoplasmic granules that may not be apparent by light microscopy. Furthermore, M3v blasts show a typical bilobed nuclear configuration. This latter morphologic phenotype, together with missing granulation, often resulted in the misleading diagnosis of acute monocytic or myelo-monocytic leukemia before the cytogenetic correlation of both AML M3 and M3v with t(15;17)(q22;q12) was observed. AML M3v accounts for approximately 1/3 of APL cases.

Prognosis
Favourable if treated with an ATRA (all trans-retinoic acid) and anthracycline containing regimen: CR in >80% of cases, med survival: in most studies with
ATRA treatment not reached yet, adverse prognosis factors: high WBC, FLT3 - internal tandem duplication (ITD), bleeding episodes.

Cytogenetics

Cytogenetics morphological

\[(t(15;17)(q22;q12)\) leading to a PML-RARA-rearrangement on the molecular level. Variant translocations involving one or more chromosomes in addition to 15 and 17 are found in 2-5% of cases with PML-RARA-rearrangement. Cytogenetically cryptic PML-RARA-rearrangements are observed in 2-3% of APL cases.

Additional anomalies

Are observed in 35-45% of cases, most frequent: +8, del(9q), ider(17)(q10)t(15;17).

Variants

3 variant translocations involving RARA:
\[(t(11;17)(q23;q12)\) leading to a fusion of RARA and PLZF; \[(t(5;17)(q23;q12)\) leading to a fusion of RARA and NPM; \[(t(11;17)(q13;q12)\) leading to a fusion of RARA and NuMA. The cases with variant translocation have initially been reported as having APL morphology. However, morphological differences exist. Clinically important is that APL variant with \[(t(5;17)(q12;q12)\) seems to respond to ATRA, while APL variant with \[(t(11;17)(q23;q12)\) does not.

References

Brumning RD, Matutes E, Harris NL, Flandrin G, Vardiman J, Bennett JM, Head DR. WHO histological classification of acute myeloid leukaemias. World Health Organization of Tumors, Pathology & Genetics, Tumors of Haematopoietic and Lymphoid Tissues, editors: Jaffe ES, Harris NL, Stein H, Vardiman J, Lyon, IARC Press Chapter 4, page: 75-108.

This article should be referenced as such: