MTHFR (5,10-Methylenetetrahydrofolate reductase)

Raphaël Saffroy, Antoinette Lemoine, Brigitte Debure

Service de Biochimie et Biologie moleculaire, Hopital Universitaire Paul Brousse, 14 avenue Paul Vaillant Couturier, 94800 Villejuif, France (RS, AL, BD)

Published in Atlas Database: August 2005
Online updated version: http://AtlasGeneticsOncology.org/Genes/MTHFRID41448ch1p36.html
DOI: 10.4267/2042/38248
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2005 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity
Other names: MTR; MTHR
HGNC (Hugo): MTHFR
Location: 1p36.22

DNA/RNA
Description
The gene encompasses 19.3 kb of DNA; 11 exons.

Transcription
For MTHFR, transcripts of 9.0, 7.2, 6.3, 3.0 and 2.8 kb were observed. The different-sized transcripts result from alternate transcription start sites and multiple polyadenylation signals. The total abundance is low, and the proportion of each transcript differs among tissues.

Protein
Description
656 amino acids; 74.6 kDa protein.

Expression
Expression is more intense in testis, intermediate in brain and kidney, and lower in other tissues.

Localisation
Cytosolic.
MTHFR metabolic pathway

Function
MTHFR catalyzes the conversion of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cosubstrate for homocysteine remethylation to methionine.

Homology
FAD-linked oxidoreductase.

Mutations

Germinal
Two common polymorphisms 677C-T and 1298A-C have been identified. These polymorphisms are responsible for the synthesis of a thermolabile form of MTHFR. The 677TT genotype was particularly common in northern China (20%), southern Italy (26%), and Mexico (32%). The 677C>T mutation in the MTHFR gene is an important cause of mild hyperhomocysteinemia. The second polymorphism at nucleotide position 1298 is not as well characterized.

Implicated in

Homocystinuria due to deficiency of methylenetetrahydrofolate reductase activity

Disease
This form of homocystinuria is caused by mutation in the 5, 10-alpha-methylenetetrahydrofolate reductase gene. This homocystinuria is autosomal recessive and shows a wide range of clinical symptoms, such as developmental delay, severe mental retardation, perinatal death, psychiatric disturbances, and later-onset neurodegenerative disorders. In the classic form, both thermostable and thermolabile enzyme variants have been identified.

Cancer

Disease
In some cancers, folate and other nutrients involved in the MTHFR metabolic pathway appear to interact with MTHFR polymorphisms to further modify cancer risk. In most studies, MTHFR 677TT and 1298CC are associated with moderately reduced colorectal cancer risk, in particular in individuals who had higher folate levels. In individuals with low folate intake and/or high alcohol consumption, cancer risk may be increased. Moreover, both adults and children with the variant forms of MTHFR seems to have a decreased risk of lymphoid leukemias. MTHFR polymorphisms were also associated with other cancers as breast, head and neck, liver, gastric or lung cancers.

Oncogenesis
Reduction of 5, 10-methylenetetrahydrofolate (methyleneTHF), a donor for methylating dUMP to dTMP in DNA synthesis, to 5-methyltetrahydrofolate (methylTHF), the primary methyl donor for methionine synthesis, is catalyzed by MTHFR. Diminution in the activity of the MTHFR enzyme increases the pool of methyleneTHF at the expense of the pool of methylTHF. Enhanced availability of methyleneTHF in the DNA synthesis pathway reduces misincorporation of uracil into DNA, which might otherwise result in double-strand breaks during uracil excision repair processes, thus increasing the risk of chromosomal aberrations. Moreover, the MTHFR polymorphisms influences DNA methylation status through interaction with folate status.

Coronary Artery Disease

Disease
The 677TT MTHFR allele was correlated with coronary artery disease. However, the role of this
polymorphism in the causation of coronary artery disease is controversial.

Depression

Disease

Hyperhomocysteinemia and the 677TT genotype were significantly related to depression.

To be noted

Note

MTHFR polymorphisms influence the metabolism of folates and could modify the pharmacodynamics of antifolates and many other drugs whose metabolism, biochemical effects, or target structures require methylation reactions.

References

This article should be referenced as such: