Leukaemia Section
Mini Review

t(4;14)(p16;q32)

Frank Viguié

Laboratoire de Cytogénétique - Service d'Hématologie Biologique, Hôpital Hôtel-Dieu, 75181 Paris Cedex 04, France (FV)

Published in Atlas Database: May 2005

Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t04142059.html

DOI: 10.4267/2042/38220

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2005 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Clinics and pathology

Disease
Found in plasma cell leukaemia, multiple myeloma, plasmacytoma and monoclonal gammopathy of unknown significance (MGUS).

Phenotype/cell stem origin
Malignant plasma cells have the phenotype of mature terminally differenciated B-cells; there origin may be a pluripotent stem cell.

Epidemiology
Poorly described before FISH, quite karyotypically undetectable: found initially in cell lines, it represents the second more frequent IgH associated rearrangement, after t(11;14); detected by interphase FISH or RT-PCR in 25% MM cell lines, 15-20% primary MM and 0-10% MGUS lines; might be frequent but karyotypically undetected.

Clinics
Found in MM cases with unfavorable prognosis, even in patients treated with high dose chemotherapy.

Additional anomalies
Hypodiploid karyotype and -13 / 13q- in major part of cases.

Genes involved and proteins

FGFR3

Location
4p16.3

![c-FGFR3 (4p16.3) in normal cells: PAC 884J17 - Courtesy Mariano Rocchi, Resources for Molecular Cytogenetics.](image)

Protein
Member of the tyrosine-kinase FGF receptor family, contains an extracellular domain with Ig-like loops, a transmembrane domain, and intracellular tyrosine kinase domains; localisation: plasma membrane; tyrosine kinase receptor; role in signal transduction, activates multiple signaling pathways regulating cell proliferation and differentiation; constitutional point mutations resulting in ligand-independent activation, are responsible of familial dominant achondroplasia / thanatophoric dwarfism.

IgH

Location
14q32
MMSET (multiple myeloma SET domain), also known as WHSC1 (Wolf-Hirschhorn syndrome candidate 1)

Location
4p16.3

DNA/RNA
90 kb, 25 exons, 5' - 3' centromeric orientation - complex alternative splicing.

Protein
136 KDa, 4 domains: PWWP domain (proline-tryptophan-tryptophan-prolin motif), HMG box (high mobility group), PHD-type (plant-homeodomain) zinc finger domain and SET (suppressor of variegation enhancer of zeste and Trithorax) domain. One full length 1365 aa isoenzyme and 4 possible truncated variants. Transcription factor, ubiquitously expressed but preferentially in growing embryonic tissues. Chromatin remodelling agent, regulates histones methylation. Constitutional deletion of one copy is responsible for Wolf-Hirschhorn syndrome by haplo-insufficiency.

Result of the chromosomal anomaly

Hybrid gene

Description
4p16.3 breakpoint in a 110 kb region between MMSET (centromeric) within the 5' introns, and FGFR3 (telomeric). 14q32 breakpoint in the IgH switch region involving JH + constant region.

Two fusions generated, FGFR3 brought under the influence of the Ig gene enhancer Ea on der(14); MMSET under the influence of enhancer Eµ on der(4).

Both FGFR3 and MMSET genes are deregulated by the translocation and a IgH-MMSET fusion transcript, detectable by RT-PCR, is generated.

Fusion protein

Description
No IgH-FGFR3 fusion protein, but promoter exchange between both partner genes; however, somatic mutations similar to what has been found in thanatophoric dwarfism have been identified in some cases; they may also contribute to abnormal FGFR3 activation. According to the variable breakpoint inside MMSET gene, the translocation may generate either a full length MMSET protein or a NH2-terminal truncated one.

Oncogenesis

Overexpression and activation of FGFR3 provides an oncogenic signal enhancing cell proliferation and survival. The functional consequences of MMSET deregulation are not completely investigated. All t(4;14) positive cases express MMSET whereas 30% lack FGFR3 expression, sometimes correlated with loss of der(14), which tends to demonstrate that MMSET dysregulation should be the crucial oncogenic event.

References

Chesi M, Nardini E, Brents LA, Schröck E, Ried T, Kuehl WM, Bergsagel PL. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet. 1997 Jul;16(3):260-4

Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood. 1998 Nov 1;92(9):3025-34

This article should be referenced as such: