Solid Tumour Section

Review

Soft Tissue Tumors: Liposarcoma: Myxoid liposarcoma

Manuel Sánchez-Martín, Ines González-Herrero, Isidro Sánchez-García

Laboratorio 13, Instituto de Biología Molecular y Celular del Cancer (IBMCC), Centro de Investigacion del Cancer, Campus Unamuno, 37.007-Salamanca, Spain (MSM, IGH, ISG)

Published in Atlas Database: November 2004
Online updated version: http://AtlasGeneticsOncology.org/Tumors/MyxoidLipoSarclID5169.html
DOI: 10.4267/2042/38162

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2005 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Alias
Myxoid-round cell liposarcoma.

Note
Sarcomas are relatively rare malignant tumours and comprise less than 10% of all cancers. Classical classifications of sarcomas are based on the site of tumour (bone or soft tissue). Soft tissue sarcoma (STS) is the collective term used for malignancies arising in muscles, fat, vessels, the peripheral nervous system and fibrous tissue. Histopathologic examination of such tumours has revealed a large number of distinct entities, each displaying its own morphologic and clinical characteristics.

Cytogenetic and molecular genetic analyses have shown that some of these STS are characterized by specific chromosomal translocations, whereas other STS show complex genetic aberrations. Liposarcoma is the most common soft tissue malignancy in adults accounting for at least 20% of all sarcomas in this age group. Myxoid-round cell liposarcoma is a subtype of liposarcoma characterized by the presence of the reciprocal chromosomal translocation t(12;16)(q13;p11). This translocation creates the FUS-DDIT3 chimeric gene.

Clinics and pathology
Classification

Liposarcoma is a lipogenic tumour subclassified into four main histologic groups, including well-differentiated liposarcoma (lipoma-like and sclerosing types), myxoid-round cell liposarcoma, pleomorphic liposarcoma, and dedifferentiated liposarcoma. The histologic group is predictive of both the clinical course of the disease and the ultimate prognosis.

Cytogenetics

Cytogenetics Morphological

Cytogenetics analyses have shown that several lipogenic tumours are characterized by specific chromosomal abnormalities, the best known was the reciprocal translocation t(12;16)(q13;p11) of myxoid-round cell liposarcoma, described about twenty years ago. This translocation results in a fusion gene consisting of the 5' part of the FUS (TLS) gene and the complete coding region of the CHOP gene (see fig.1).

Genes involved and proteins

FUS (TLS)

Location

16p11

DNA / RNA

The FUS gene consists of 15 exons located within 11 kb of genomic DNA, and the exon 1 contains a 72-bp untranslated region and the translation initiation codon. The location of the FUS gene was identified as 16p11 by the site of the breakpoint in the translocation. The assignment was further narrowed to 16p11.2 by cytogenetic studies. FUS is rearranged in myxoid liposarcomas in the characteristic chromosomal translocation t(12;16)(q13;p11).

Protein

The FUS protein, provisionally designated TLS (translocated in liposarcoma), and then called FUS, contains an RNA-recognition motif and is a component of nuclear riboprotein complexes. Lack of FUS in mice causes lethality into neonatal period, it influences lymphocyte development in a non-cell-intrinsic manner, it has an intrinsic role in the proliferative responses of B cells to specific mitogenic stimuli, and it is required for the maintenance of genomic stability. The involvement of a nuclear riboprotein in these processes in vivo indicates that FUS is important in genome maintenance.

Somatic mutations

Variants: FUS has been also shown a partner of gene fusions linked in other malignances: fused to ERG in acute myeloid leukaemia with t(16:21)(p11;q22), fused to CREB3L2 in low-grade fibromyxoid sarcoma (LGEMS) by a translocation between chromosome bands 7q33-34 (CREB3L2) and 16p11 (FUS) or fused to ATF1 in histiocytoma.

DDIT3 (CHOP)

Location

12q13

DNA / RNA

The DDIT3 gene was isolated from human cells and has a high level of conservation with previously described hamster gene. Each is composed of 4 exons with intron/exon junctions maintained at identical positions. They showed 91% identity in amino acid sequence and 78% identity in nucleotide sequence. The gene is located on chromosome 12 (12q13.1-q13.2).

Protein

CHOP (C/EBP-homologous protein) is a nuclear protein which was identified as a dominant-negative inhibitor of the transcription factors C/EBP and LAP. The protein also was called DDIT3 for DNA damage-inducible transcript 3' and GADD153 for 'growth arrest- and DNA damage-inducible gene. DDIT3 is consistently rearranged in myxoid liposarcomas in the characteristic chromosomal translocation t(12;16)(q13;p11). Its molecular characterization showed that the DDIT3 gene is fused with a gene on chromosome 16 named FUS.

Somatic mutations

Variants: An analysis of peripheral blood samples from 19 patients with myxoid liposarcoma linked to t(12;16) and from 1 patient with myxoid liposarcoma associated to t(12;22;20) chromosomal translocation, resulting in the fusion of the DDIT3 and EWS genes, found FUS-DDIT3 hybrid fragments in 3 patients with t(12;16) and the EWS-DDIT3 hybrid in the patient with the latter translocation.
Result of the chromosomal anomaly

Hybrid Gene

![Diagram of FUS-DDIT3 fusion](image)

The FUS-CHOP fusion genes consist of the 5' promoter region and exons 1-5 or, more rarely, 1-7 or 1-8 of FUS gene fused to the complete coding region, including exons 1-4 or 2-4, of CHOP (DDIT3) gene.

Fusion Protein

Oncogenesis

Oncogenic properties Transcriptional control of the fusion gene is dominated by the FUS housekeeping type of regulatory region, leading to stable expression of the fusion protein in tumor cells. The transforming properties of the FUS-DDIT3 fusion protein have been demonstrated in NIH 3T3 cells and fibroblasts. In the FUS-DDIT3 fusion, transcriptional activation is specifically conferred on the chimeric protein by the FUS segment after the translocation event. The portion of FUS that is present in the FUS-DDIT3 and FUS-ERG fusion proteins is similar and this part has been shown to be an autonomous transcriptional activation domain. The protein most likely functions as an abnormal transcription factor acting on a number of downstream target genes.

Mouse models In vivo, mice expressing FUS-DDIT3 develop liposarcomas. Overexpression of FUS-DDIT3 transgene driven by the elongation factor 1alpha (EF1alpha) promoter to all tissues, results in most of the symptoms of human liposarcomas, including the presence of lipoblasts with round nuclei, accumulation of intracellular lipid, induction of adipocyte-specific genes and a concordant block in the differentiation program (see figure 2). No tumours of other tissues were found in these transgenic mice despite widespread activity of the EF1alpha promoter. This establishes FUS-DDIT3 overexpression as a key determinant of human liposarcomas and provided the first in vivo evidence for a link between a fusion gene created by a chromosomal translocation and a solid tumour.

References

Waters BL, Panagopoulos I, Allen EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet. 2000 Sep;121(2):109-16

Panagopoulos I, Mandahl N, Mitelman F, Aman P. Two distinct FUS breakpoint clusters in myxoid liposarcoma and acute myeloid leukemia with the translocations t(12;16) and t(16;21). Oncogene. 1995 Sep 21;11(6):1133-7

This article should be referenced as such: