CMKOR1 (chemokine orphan receptor 1)

Karin Broberg

Department of Occupational and Environmental Medicine, Lund University Hospital, Lund, Sweden (KB)

Published in Atlas Database: November 2004
Online updated version : http://AtlasGeneticsOncology.org/Genes/CMKOR1ID40108ch2q37.html
DOI: 10.4267/2042/38146

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2005 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: CMKOR1; RDC1; GPRN159; G protein-coupled receptor; chemokine orphan receptor 1; G protein-coupled receptor RDC1 homolog
HGNC (Hugo): CXCR7
Location: 2q37.3
Local order: Telomeric to IQCA. Centromeric to COPS8.
Note: RDC1 was originally thought to be the receptor for VIP.

DNA/RNA

Description
The genomic size has been estimated to approximately 12.5-13.5 kb. RDC1 has previously been reported to contain only one exon of 1.09 kbp. However, the finding of a RDC1 transcript corresponding to four different regions with exon/intron boundaries in the BAC 514f21 suggests a more complex gene structure. The predicted amino acid sequence of exon 3 and 4 does not show any homology to the protein databases and, since they both contribute with stop codons, it could be questioned whether these sequences represent exons, or are part of an alternatively spliced 3’ untranslated region of the gene.

Pseudogene
None.

Protein

Description
362 amino acids; 41522 Da.

Expression
RDC1 is expressed in embryological, juvenile as well as adult tissues. Expression has been reported in e.g. bladder, spleen, heart, skeletal muscle, peripheral nervous system and placenta.

Localisation
Integral membrane protein.

Function
Orphan receptor, but its endogenous ligand has not yet been identified. The protein is also a coreceptor for human immunodeficiency viruses (HIV). RDC1 belongs to a family of G-protein coupled receptors, which includes hormone, neurotransmitter and light receptors, all of which transduce extracellular signals through interaction with guanine nucleotide (G) binding proteins.

Homology
RDC1 displays homology to other members of the large family of G-protein coupled receptors.

Mutations

Germinal
Single nucleotide polymorphisms.

Somatic
Translocations involving RDC1 and HMGA2 has been reported in three lipomas (see below).

Implicated in

Lipoma
Disease
Benign adipocyte tumor.
Prognosis
Good.

Cytogenetics
Translocations involving 2q35-37 and 12q13-15 have been reported in six lipomas.

Hybrid/Mutated gene
Fusion between RDC1 and HMGA2 has been reported in three lipomas with rearrangement involving 2q35-37 and 12q13-15. The breakpoint occurred after the third exon of HMGA2, the most common breakpoint of this gene, and in a previously unknown 3’ part of the RDC1 gene. The RDC1 part of the fusion was over 300 bp.

Abnormal protein
The functional impact of this fusion is most likely a truncation of HMGA2, since the RDC1 part contributes with a stop codon one amino acid downstream of the breakpoint.

Oncogenesis
Not yet established.

Tenosynovial giant cell tumours

Disease
Benign tumor of synovium and tendon sheath.

Prognosis
Good.

Cytogenetics
Translocations involving 1p11-13 and 2q35-37 have been reported in eight cases of tenosynovial giant cell tumours.

Hybrid/Mutated gene
Four out of seven cases of tenosynovial giant cell tumours with aberrations of 2q35-37 had breakpoints in a BAC probe 260J21 (BACPAC, Oakland), which contains the RDC1 gene.

References


This article should be referenced as such: