t(4;22)(q12;q11.2)
Barbara K Goodman, Anne Michele Safely
Clinical Cytogenetics, Molecular Diagnostics Laboratories, Duke University Health System, Box 3631, Durham, NC 27710, UK (BKG, AMS)

Published in Atlas Database: September 2004
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0422q12q11ID1153.html
DOI: 10.4267/2042/38134
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2004 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Partial karyotype showing chromosomes 4 and 22.

Clincs and pathology

Disease
Reported in 3 cases; myeloproliferative disorder:

atypical chronic myeloid leukemia (aCML) (Philadelphia chromosome-negative).

Etiology
One case was post-treatment for lymphoma, thus suspected to be a secondary MPD.

Clinics
3 cases shared characteristics of splenic enlargement, eosinophilia and male predominance.

Prognosis
One patient on treatment with good response to imatinib mesylate.
Cytogenetics

Note
t(4;22)(q12;q11.2), easily distinguished cytogenetically.

Cytogenetics molecular

FISH for BCR-ABL1 is negative for fusion but will show extra signal for BCR when using the dual fusion probe set. BCR-ABL1 PCR is negative.

![Interphase FISH showing 3 signals for BCR (green), suggesting rearrangement. Two normal signals for ABL1 (red).](image)

Probes

BCR-ABL dual fusion probe set.

Additional anomalies

The t(4;22) was observed as the sole anomaly in the few reported cases to date.

Genes involved and proteins

PDGFRA

Location

4q12

Note

Member of the protein-tyrosine kinase receptor family subclass III that includes the colony stimulating factor-1, c-KIT, FLT1, and FLT3/FLK2. Suggested role for normal PDGFRA receptor expression during periods of glial cell development and connective tissue growth.

DNA/RNA

23 exons; includes 2 intracellular tyrosine kinase domains, TK1 and TK2 (exons 13-15 and 17-21), 5 extracellular Ig-like domains (exons 3-10), and a hydrophobic transmembrane domain (exon 10). The cytoplasmic region also encodes an ATP binding site.

Protein

170-kD transmembrane glycoprotein that normally binds all PDGF isoforms, AA, AB, and BB at its extracellular Ig domain.

BCR

Location

22q11.2

DNA/RNA

23 exons; alternate splicing.

Protein

160-kDa protein; contains a unique serine/threonine kinase activity and at least two SH2 binding sites encoded in its first exon and a C-terminal domain that functions as a GTPase activating protein for p21(rac).

Result of the chromosomal anomaly

Hybrid gene

Note

5'BCR-3'PDGFRA fusion.

Description

Fusion of BCR exon 7, 12 or 17 (in 3 cases described) with PDGFRA exon 12, in frame, containing intronic sequence from BCR in two cases.

Fusion protein

Description

169 kDa protein in one case, somewhat smaller in two others.

Expression / Localisation

Predicted to be localized intracellularly.

Oncogenesis

Alteration of tyrosine kinase activity secondary to loss of regulatory and PDGF binding domains; also, BCR domains may significantly affect BCR-PDGFRA downstream signaling pathways as seen with BCR-ABL fusion.

References

This article should be referenced as such: