CDKN2a (cyclin dependent kinase 2a) / p16

Raphael Saffroy, Antoinette Lemoine, Brigitte Debure

Service de Biochimie et Biologie moleculaire, Hopital Universitaire Paul Brousse, 14 avenue Paul Vaillant Couturier, 94800 Villejuif, France (RS, AL, BD)

Published in Atlas Database: August 2004
Online updated version: http://AtlasGeneticsOncology.org/Genes/CDKN2aID146.html
DOI: 10.4267/2042/38121

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2004 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity
Other names: p16; INK4; p16-INK4a; TP16; CDK4; MTS1
HGNC (Hugo): CDKN2A
Location: 9p21.3

DNA/RNA
Description
The gene encompasses 6.6 kb of DNA; 3 exons.

Transcription
471 nucleotides mRNA. The CDKN2 gene generates several transcript variants from different promoters. Each transcript differs in its first exon (E1), and utilizes alternate polyadenylation sites. E1-alpha, which is spliced into the common exons E2 and E3, gives rise to the p16-INK4 transcript.

Protein
Description
156 amino acids; 16.5 kDa protein.

Expression
Moderately expressed in many organs as thymus, liver, pancreas, prostate, lung, or kidney.

Function
P16-INK4a interacts strongly with cyclin-dependent kinases 4 and 6 and inhibits their ability to interact with cyclin D. P16-INK4a induces cell cycle arrest at G1 and G2/M checkpoints, blocking them from phosphorylating RB1 and preventing exit from G1 phase of the cell cycle. P16-INK4a could act as a negative regulator of the proliferation of normal cells.

Homology
Belongs to the cdkn2 cyclin-dependent kinase inhibitor family.

Implicated in
Cutaneous malignant melanoma 2 (CMM2)

Disease
Malignant melanoma arises de novo or from a preexisting benign nevus, which occurs most often in the skin but also may involve other sites.

Oncogenesis
Familial melanoma (comprising between 8 and 12% of all melanoma cases) is a genodermatosis transmitted as an autosomal dominant trait. CDKN2a has been identified as a major susceptibility gene for melanoma. However this gene accounts for a minority of familial melanoma. P16 is functionally inactivated by mutations or deletions, however, because many such mutations occur in exon 2, they can potentially also affect the alternative reading frame (ARF) protein.

Familial atypical multiple mole melanoma carcinoma syndrome (FAMMM)

Disease
Patients with the FAMMM syndrome are genetically loaded with an increased risk of developing melanoma and other malignant neoplasms, for example, a pancreatic cancer.

Oncogenesis
FAMMM syndrome is an autosomal dominant disorder with variable incomplete penetrance of the clinical phenotypes. Germline mutations in the p16-INK4a
gene were found in approximately 40% of the FAMMM syndrome.

Sporadic cancer

Disease

Defects in CDKN2a are involved in tumor formation in a wide range of tissues.

Prognosis

Aberrant p16 expression is associated with more aggressive behavior.

Oncogenesis

LOH on 9p21 is one of the most frequent genetic alterations identified in human cancer. However, point mutations of p16 on the other chromosome are relatively rare. Promoter methylation appears as the commonest mechanism of p16 gene inactivation.

References

Sharpless E, Chin L. The INK4a/ARF locus and melanoma. Oncogene. 2003 May 19;22(20):3092-8

This article should be referenced as such: