SMAD2 (mothers against decapentaplegic homolog 2 (Drosophila))

Raphael Saffroy, Antoinette Lemoine, Brigitte Debure

Service de Biochimie et Biologie moleculaire, Hopital Universitaire Paul Brousse, 14 avenue Paul Vaillant Couturier, 94800 Villejuif, France (RS, AL, BD)

Published in Atlas Database: July 2004
Online updated version: http://AtlasGeneticsOncology.org/Genes/SMAD2ID370.html
DOI: 10.4267/2042/38110

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2004 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: MADH2; MADR2; JV18-1; JV18
HGNC (Hugo): SMAD2
Location: 18q21.1

DNA/RNA

Description
The gene encompasses 90 kb of DNA; 12 exons.

Transcription
2285 nucleotides mRNA. Alternative splicing was described.

Protein

Description
467 amino acids; 52 kDa protein. A short 438 amino acids isoform was also described. Smad2 belongs to the Darfwin proteins family which are composed of two conserved amino- and carboxyl-terminal domains known as MH1 and MH2, respectively.

Expression
High expression levels in skeletal muscle, heart and placenta.

Function
Smad2 is an intracellular mediator of TGF-beta family and activin type 1 receptor. Smad2 mediate TGF-beta signaling to regulate cell growth and differentiation. Smad2 is released from cytoplasmic retention by TGF-beta receptor-mediated phospho-rylation. The phosphorylated Smad2 then forms a heterodimeric complex with Smad4, and this complex translocates from cytoplasm into nucleus. By interacting with DNA-binding proteins, Smad complexes then positively or negatively regulate the transcription of target genes.

Homology
With the other members of the Darfwin/Smad family.

Implicated in

Disease
Colorectal cancers

Oncogenesis
Smad2 was proposed to be a tumor suppressor gene that may function to disrupt TGF-beta signaling. Inactivating mutations in Smad2 have been found in various cancer including colorectal carcinomas. The majority of tumor-derived mutations cluster in the carboxy-terminal MH2 domain, and some of these have been shown to disrupt TGF-beta signaling by blocking receptor-dependent phospho-rylation or by preventing heterodimeric interactions between Smads. A mutation at position 133 in the amino-terminal MH1 domain has also been associa-ted with colorectal carcinoma. Nevertheless, loss of Smad2 activation and/or expression was related to occur in less than 10% of colorectal cancers.
To be noted

Smad2 gene has also been found altered in lung carcinomas, cervical carcinomas and hepatocellular carcinomas.

References


This article should be referenced as such: