Leukaemia Section
Mini Review

t(8;9)(p12;q33)
Jacques Boyer
Laboratoire d'Hématologie, CH du MANS, France (JB)

Published in Atlas Database: January 2004
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0809p12q33ID1129.html
DOI: 10.4267/2042/38076

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2004 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

8p12 myeloproliferative syndrome (EMS)/stem cell leukemia-lymphoma syndrome (SCLL) belongs to the tyrosine kinase fusion genes chronic myeloproliferative diseases It is associated with recurrent translocations: t(6;8)(q27;p12), t(8;9)(p12;q33), t(8;11)(p12;p15), t(8;12)(p12;q15), t(8;13)(p12;q12), t(8;17)(p12;q25), t(8;19)(p12;q13), t(8;22)(p12;q11).

Clinics and pathology

Disease
Myeloproliferative disorder that is frequently associated with T-cell, or less commonly B-cell non Hodgkin lymphoma.

Phenotype/cell stem origin
May involve a stem cell.

Epidemiology
9 cases are described; sex ratio : 6M/3F.

Clinics
Aggressive disease; myeloid hyperplasia progressing to myelodysplasia and T or B-cell lymphoma, splenomegaly, lymph node. High WBC with myelemia with frequently eosinophilia and sometimes monocytosis (near CMLL).

Evolution
The disease transforms to ANLL or occasionally ALL in a median of 6 months.

Prognosis
Median survival: 12 months.

Cytogenetics

Cytogenetics morphological
This translocation is a variant of the t(8;13)(p12;q12).

Additional anomalies
+der(9), +21.
Genes involved and proteins

FGFR1
- Location: 8p12

CEP110
- Location: 9q33
- DNA/RNA: DNA: 26kb-19 exons RNA: Three mains transcripts of approximately 7.5, 4.5 and 1.5 kb. CEP transcripts are barely expressed in thymus and peripheral blood cells.
- Protein: CEP110 gene codes for a 994-amino acid coiled-coil protein with 4 consensus leucine zippers (centrosome associated P110 protein).

Result of the chromosomal anomaly

Hybrid gene
- Description: The t(8;9) breakpoint in the FGFR1 gene is localized in exon 8, 12 bp upstream of the exon 8/intron 8 junction. It is distinct from the breakpoints in the t(6;8) and t(8;13) but it preserves the same FGFR1 sequence in the chimeric protein. The breakpoint in the CEP110 is localized in exon 15. The translocation leads to the formation of the two reciprocal transcripts.

Fusion protein
- Description: The CEP110-FGFR1 fusion protein encodes an aberrant tyrosine kinase of 150-kd which retains most of CEP110 with the leucine zipper motif and the catalytic domain of FGFR1.

The CEP110-FGFR1 protein has a constitutive kinase activity and is located within the cell cytoplasm contrasting with the centrosome and membrane localizations of the wildtype respective proteins.

The FGFR1-CEP110 protein contains the FGFR1 N-terminal region with its ligand-binding and transmembrane domains and the CEP110 C-terminal region.

Oncogenesis
- Activated aberrant tyrosine kinase are likely to promote leukemogenesis through constitutive activation of the FGFR1 kinase. This activation may be mediated by dimerisation of the portion of the fusion protein which contains the leucine zippers.
- This activation may interacts with the cell proliferation and the apoptosis, additional anomalies may also play an important role in the evolution of the disease.

References
- Cross NC, Reiter A. Tyrosine kinase fusion genes in chronic myeloproliferative diseases. Leukemia. 2002 Jul;16(7):1207-12.

This article should be referenced as such:
