Leukaemia Section
Mini Review

inv(8)(p11q13)
Jacques Boyer
Laboratoire d'Hématologie, CH du MANS, France (JB)

Published in Atlas Database: December 2003
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/inv8p11q13ID1189.html
DOI: 10.4267/2042/38072
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2004 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity
Note
Two distinct clinical syndromes have been associated with the 8p11-12 region:
Stem-cell myeloproliferative disorder with FGFR1 rearrangement
AML M4 or M5 erythrophagocytosis-associated with MOZ rearrangement.
The inv(8)(p11q13) involves MOZ.
The partners of 8p11 are 8q13, 14q11, 16p13, 19q13, 22q13 and 3q27, 17q12 in a complexe translocation t(3;8;17)(q27;p11; q12).

Clinics and pathology
Disease
Acute myelomonocytic or monocytic leukaemia (M4, M5a, M5b FAB) with erythrophagocytosis by blasts. Acute myeloblastic leukemia M0/M1 FAB (one case).
Epidemiology
Rare. Young age (6 patients, median: 23.5 years) and female sexe.
Cytology
Morphology feature observed in AML with t(8;16).
Prognosis
Probably poor.

Cytogenetics
Cytogenetics morphological
Inv(8) (p11q13) is a variant of t(8;16) (p11;p13)
Additional anomalies
In one case der(10)t(1;10)(q25;p15).

Genes involved and proteins
MOZ
Location
8p11
Note
MOZ contains a LAP (Leukemia associated protein) zinc finger domain, a HAT domain (Histone acetyltransferase) and a acidic domain. Detection by FISH: YAC 176C9.
Protein
ZNF220
Monocytic leukemia zinc finger protein. 2004 amino acids and 225 kDa nuclear protein, with 2 LAP/PHD-type zinc fingers.
MOZ is a histone acetyltransferase (HAT) and the founding member of the MYST family of HATs, a family that includes proteins involved in cell cycle regulation, chromatin remodeling and dosage compensation.
MOZ plays an important role during hematopoiesis with his transcriptional coregulator activity.

TIF2
Location
8q13
Note
Aliases: GRIP1, NCoA-2.
Nuclear receptors are ligand-inductible transcription factors with three structural domains : an activation function AF-1, a DNA-binding domain and a second activation function AF-2 that is mediated by nuclear coactivators (NRCoAs) : TIF2 was recently shown to be one such mediators of AF-2 function.
Detection by FISH: PAC clone 192D10.
The TIF-2 protein is homologous to other NRCoAs specifically SRC-1 (alias NcoA-1). This protein has HAT activity and also interacts directly with CBP. It is likely that TIF-2 mediates transcriptional activation by a mechanism involving chromatin remodeling.

Result of the chromosomal anomaly

Hybrid gene

Description
The fusion gene produces a mRNA containing the 5’ end of MOZ appended in translational frame to the 3’ end of TIF2. The inv(8) MOZ breakpoint is distinct from the breakpoint in the MOZ -CBP fusion. The fusion product retains the zinc fingers, the HAT domain of MOZ along with the HAT domains and CBP interacting domain of TIF2.

Fusion protein

Description
MOZ-TIF2

Oncogenesis
The ability of HATs to affect the chromatin structure and regulate gene expression is well appreciated. How the MOZ-TIF2 fusion protein is involved in acute leukemia is not known, but it probably affects the chromatin condensation. It may modulate or augment the transcriptional activity of genes normally regulated by MOZ or it may serve as a bridge between MOZ and CBP. Recently, it was demonstrated that MOZ-TIF2 has transforming properties in vitro and causes AML. The C2HC nucleosome recognition motif of MOZ and MOZ-TIF2 interaction with CBP are essential for transformation.

To be noted

Case Report
inv(8)(p11.2q13) found in a patient with chronic myelomonocytic leukemia that progressed to acute myeloid leukemia

References

Carapeti M, Aguiar RC, Goldman JM, Cross NC. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood. 1998 May 1;91(9):3127-33

Pébusque MJ, Chauffanet M, Popovici C, Bimbbaum D, [FGFR1 and MOZ, two key genes involved in malignant hemopathies linked to rearrangements within the chromosomal region 8p11-12]. Bull Cancer. 2000 Dec;87(12):887-94

Deguchi K, Ayton PM, Carapeti M, Kukot JL, Snyder CS, Williams IR, Cross NC, Glass CK, Cleary ML, Gilliland DG. MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell. 2003 Mar;3(3):259-71

This article should be referenced as such: