Leukaemia Section
Mini Review

Acute megakaryoblastic leukemia (AMegL)
M7 acute non lymphocytic leukemia (M7-ANLL)

Antonio Cuneo, Francesco Cavazzini, Gianluigi Castoldi
Hematology Section, Department of Biomedical Sciences, University of Ferrara, Corso Giovecca 203, Ferrara, Italy (AC, FC)

Published in Atlas Database: November 2003
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/M7ANLLID1100.html
DOI: 10.4267/2042/38052

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2004 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Alias: AML-M7
Note: Sometimes presenting as "acute myelofibrosis"

Clinics and pathology

Phenotype/cell stem origin
This leukemia is thought to derive from the transformation of a multipotent myeloid progenitor cell. In the adult patient multilineage dysplasia is a common finding and in some cases a minority of myeloid blast cells is present.
The blast cells show one or more megakaryocytic markers (i.e. Factor VIII, CD61, CD41, or CD42), they test negative when using the anti-myeloperoxidase monoclonal antibody and never show coordinated expression of lymphoid markers, though isolated CD2 or CD7 positivity can be found on some occasions. The CD34, CD13 and CD33 markers are positive in a substantial fraction of cases, as is the case with the CD36/thrombospondin receptor.
The myeloperoxidase stain is negative by light microscopy, but ultrastructural peroxidase activity with a specific peri-nuclear staining pattern can be detected at the electron microscopy level.

Epidemiology
The disease is rare and, due to difficulty in diagnosis, its exact incidence is not known. Reasonably, it may account for approximately 1-2% of all de novo acute myeloid leukemias (AML) in the adult population, but the incidence in the pediatric age group is higher, partly due to an association with Down syndrome.

Clinics
The presentation is usually acute, though AMegL may develop after myelodysplastic syndrome or chronic myelogenous leukemia (CML).
In some cases acute myelofibrosis is the presentation picture.
AMegL should be distinguished from AML with megakaryoblastic involvement showing a minority of megakaryoblasts.
In children there is an association with Down syndrome.

Cytology
The blast cell morphology varies from case to case. In some patients the blasts are undifferentiated and the diagnosis requires immunophenotyping or electron microscopy studies.
Dysmegakaryocytopenesis is rather frequent. Other patients may show bleb-forming blasts, but this feature is not specific for megakaryoblasts. Micromegakaryocytes can be frequently seen.

Pathology
The bone biopsy almost invariably shows fibrosis, which can be extensive in up to 75% of the cases.
Spleen enlargement is frequently seen in children, less frequently in adults.

Treatment
Myeloablative treatment followed, whenever possible, by allogeneic or autologous bone marrow transplant is the treatment of choice.

Prognosis
In general, the prognosis is severe. 30-to-50 % of the adult patients achieve a complete morphologic
remission, but the majority relapse within a few months. Median duration of CR and survival in a study was 10.6 months and 10.4 months, respectively. Some children may fare better, with a 50% 3-year event free survival in AML-M7 post Down Syndrome or with the t(1;22) (see below). Prognosis is dismal in children with other cytogenetic abnormalities.

Result of the chromosomal anomaly

Hybrid gene

Note
The fusion gene OTT-MAL is on the der(22) chromosome and contains almost all of the sequences of each gene.

References

Cytogenetics

Cytogenetics morphological

a) Adults
There is no cytogenetic anomaly that is specific for AML-M7. The karyotype is abnormal in the vast majority of cases with complex aberrations (i.e. 3 or more clonal aberrations) occurring more frequently than in other AMLs. -5/-5q- and/or -7/-7q+ are found, as a rule, in virtually all cases with complex karyotype, which globally account for 70-80% of abnormal cases. 3q21 or q26 aberrations are found in 20-30% of the cases; the t(9;22) is another recurrent chromosome aberrations in de novo AML-M7.

b) Children
The t(1;22)(p13;q13) is specifically associated with children AML-M7, being found in approximately half of the cases. The remaining patients may show +21 (irrespective of the association with Down syndrome), +19, +8. The karyotype may be normal in approximately 10% of the cases.

Cytogenetics molecular

Partial trisomy 19, involving the q13 band, can be shown to occur at a 20-30% incidence by comparative genomic hybridization. The t(1;22)(p13;q13) fuses the OTT (RBM15) gene on 1p13 to the MAL (MLK1) gene on chromosome 22, leading to the OTT-MAL fusion gene on the derivative 22.

Genes involved and proteins

OTT (one twenty-two) or RBM15 (Rna-binding motif protein 15)
Location 1p13

MAL (Megakaryocytic acute leukemia) or MLK1 (megakaryoblastic leukemia-1)
Location 22q13

Nimer SD, MacGrogan D, Jhanwar S, Alvarez S. Chromosome 19 abnormalities are commonly seen in AML, M7. Blood. 2002 Nov 15;100(10):3838; author reply 3838-9


This article should be referenced as such: