Gene Section
Mini Review

ALK (anaplastic lymphoma kinase)
Jean-Loup Huret, Sylvie Senon

Genetics, Dept Medical Information, UMR 8125 CNRS, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France (JLH, SS)

Published in Atlas Database: August 2003
Online updated version: http://AtlasGeneticsOncology.org/Genes/ALK.html
DOI: 10.4267/2042/38004
This article is an update of:

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2003 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity
HGNC (Hugo): ALK
Location: 2p23

Protein
Description
1620 amino acids; 177 kDa; after glycosylation, produces a 200 kDa mature glycoprotein; composed of an extracellular domain, a transmembrane domain, a tyrosine kinase domain, and an intracytoplasmic domain in C-term; dimerization.

Expression
Is tissue specific; mainly in: brain, gut and testis; not in the lymphocytes.

Localisation
Cell membrane.

Function
Membrane associated tyrosine kinase receptor; probable role in the nervous system development and maintenance.

Homology
Homologies with the insulin receptor super family: LTK (leucocyte tyrosine kinase), TRKA, ROS (homolog of the drosophila Sevenless), IGF1-R, IRb.

DNA/RNA

Transcription
6226 bp cDNA; coding sequence: 4.9 kb.
Implicated in

Anaplastic large cell lymphoma (ALCL) with t(2;5)(p23;q35) --> NPM1/ALK

Disease
ALCL are high grade non Hodgkin lymphomas; ALK+ ALCL are ALCL where ALK is involved in a fusion gene; ALK+ ALCL represent 50 to 60 % of ALCL cases (they are CD30+, ALK+); 70 to 80% of ALK+ ALCL cases bear a t(2;5); the remaining ALK+ ALCL cases bear variant translocations described below and are called "cyto-plasmic ALK+" cases, of which is the t(1;2) TPM3/ ALK, found in 20% of ALK+ ALCL.

Prognosis
Although presenting as a high grade tumour, a 80% five year survival is associated with this anomaly.

Cytogenetics
Additional anomalies and complex karyotypes are most often found.

Hybrid/Mutated gene
5' NPM1 - 3' ALK on the der(5).

Abnormal protein
680 amino acids, 80 kDa; N-term 116 amino acids from NPM1 fused to the 562 C-term aminoacids of ALK (i.e. composed of the oligomerization domain and the metal binding site of NPM1, and the entire cytoplasmic portion of ALK); no apparent expres-sion of the ALK/NPM1 counterpart. Characteristic localisation both in the cytoplasm and in the nucleus, due to heterooligomerization of NPM-ALK and normal NPM whereas the normal NPM protein is confined to the nucleus; constitutive activation of the catalytic domain of ALK.

Oncogenesis
Via the kinase function activated by oligomeri-zation of NPM1-ALK mediated by the NPM1 part.

Cytoplasmic ALK+ anaplastic large cell lymphoma

Prognosis
Present a favourable prognosis comparable to the one found in t(2;5) ALK+ ALCL.

Cytogenetics
Either t(X;2)(q11;p23), t(1;2)(q25;p23), inv(2)(p23q35), t(2;3)(p23q21), t(2;17)(p23;q23), t(2;17)(p23q25) or t(2;22)(p23;q11.2); hidden translocation is frequently found.

Hybrid/Mutated gene
5' MSN, TPM3, ATIC, TFG, CLTC, ALO17 or MYH9 - 3' ALK.

Abnormal protein
N-term amino acids from the partner gene fused to the 562 C-term amino acids (in the great majority of cases) from ALK (i.e. the entire cytoplasmic portion of ALK with the tyrosine kinase domain); cytoplasmic/membraneous localisation only.

Oncogenesis
The partner gene seems to provoke the dimerization of the fused-ALK, which should lead to constitutive autophosphorylation and activation of the ALK tyrosine kinase, as for NPM1-ALK (see t(2;5)(p23;q35)).

Inflammatory myofibroblastic tumours with 2p23 rearrangements

Disease
Rare soft tissue tumour found in children and young adults about one third to half of inflammatory myofibroblastic tumour cases present with a 2p23 rearrangement involving ALK.

Prognosis
Good prognosis.

Cytogenetics
t(1;2)(q25;p23), t(2;2)(p23;q13), t(2;11)(p23;p15), t(2;17)(p23;q23), or t(2;19)(p23;p13.1) so far.

Hybrid/Mutated gene
5' TPM3 in the t(1;2), RANBP2 in the t(2;2), CARS in the t(2;11), 5' CLTC in the t(2;17), or 5' TPM4 in the t(2;19)- 3' ALK.

Abnormal protein
N-term amino acids from the partner gene fused to the 562 C-term amino acids from ALK (i.e. the entire cytoplasmic portion of ALK with the tyrosine kinase domain); homodimerization of the fusion protein is known or suspected.

Oncogenesis
Fused-ALK is contitutively activated.

To be noted

Note
ALK and some of the above ALK partners, or closely related genes, are found implicated both in anaplastic large cell lymphoma and in Inflammatory myofibroblastic tumours; this is a new concept, that 2 different types of tumour may result from the same chromosomal/gene rearrangement.
Breakpoints

ALK and partners - recurrent translocations. Editor 08/2001; last update 08/2003.

Note
Most of the breakpoints occur in the same intron of ALK, whichever partner is involved in the fusion protein.

References

Morris SW, Naevé C, Mathew P, James PL, Kirstein MN, Cui X, Witte DP. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene. 1997 May 8;14(18):2175-88

Lamant L, Dastugue N, Pulford K, Delsol G, Mariámé B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 1999 May 1;93(9):3088-95

Trinei M, Lanfrancone L, Campo E, Pulford K, Mason DY, Pellici PG, Falini B. A new variant anaplastic lymphoma kinase (ALK)-fusion protein (ATIC-ALK) in a case of ALK-positive...

This article should be referenced as such: