Solid Tumour Section
Mini Review

Thyroid: Anaplastic (undifferentiated) carcinoma
Oluwole Fadare, Giovanni Tallini
Facolta' di Medicina dell' Universita' di Bologna, Sezione Anatomia Patologica, Dipartimento Scienze
Oncologiche, Ospedale Bellaria, Via Altura 3, 40139 Bologna, Italy (OF, GT)

Published in Atlas Database: June 2003
Online updated version: http://AtlasGeneticsOncology.org/Tumors/AnaCarciThyroidID5069.html
DOI: 10.4267/2042/37995
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2003 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity
Note: Anaplastic (undifferentiated) carcinoma of the thyroid gland is a highly malignant tumor composed in part or wholly by undifferentiated malignant cells.

Clinics and pathology

Epidemiology
Anaplastic (undifferentiated) carcinoma of the thyroid gland is uncommon, accounting for less than 5% of all cases of thyroid carcinoma. The average age at diagnosis was 66.5 years, with a female to male ratio of 3.1:1 in one study of 70 cases.
Clinics

Most patients are euthyroid with a history of a rapidly enlarging neck mass. Sometimes, the tumor presents as a new-onset thyroid enlargement in a patient with longstanding thyroid nodule(s) or as the recurrence of a well-differentiated carcinoma. Tumor infiltration of surrounding structures results in secondary symptoms (dyspnea, dysphonia, dysphagia).

Pathology

Tumors are poorly defined, fleshy masses with areas of necrosis and hemorrhage. Microscopically they are composed of anaplastic cells with marked cytologic atypia and high mitotic activity. Tumor necrosis and vascular invasion are common. Histologic patterns include spindle, giant and squamoid cell types. Other patterns (e.g. angiomatoid, carcinosarcoma, lymphoepithelioma-like, adenosquamous) have been described. Undifferentiated (anaplastic) carcinoma of the thyroid must be differentiated from other high grade tumors with similar microscopic appearance originating from adjacent structures in the neck (e.g. larynx). Sometimes this distinction is only possible on clinical/anatomical grounds. Immuno-histochemically, undifferentiated thyroid carcinoma is generally negative for thyroglobulin and calcitonin. Pankeratin and epithelial membrane antigen (EMA) are positive in about one-half and one-third of cases respectively. Thyroid transcription factor-1 (TTF-1) staining is present in 0-50% of cases.

Treatment

No effective treatment modalities are currently available.

Prognosis

Anaplastic (undifferentiated) carcinomas are highly aggressive neoplasms that are usually widely invasive at presentation. Regional and distant metastases are common. Most patients die within 1 year of the diagnosis with a median survival of 3.1 months in one study. The 5-year survival rate is around 5%, and the surviving cases are typically small tumors confined to the thyroid amenable to local resection.

Cytogenetics

Morphological cytogenetics

Anaplastic (undifferentiated) carcinoma represents not only morphologically but also in terms of somatic genetic alterations the extreme malignant form of thyroid cancer and as such it is characterised by complex chromosomal alterations.

Molecular cytogenetics

LOH: Allelic loss has been identified at 1q (40%), 9p (58%), 11p (33%), 11q (33%), 17p (44%), 17q (43%), 19p (36%), 22q (38%).

CGH: DNA unbalance can be demonstrated at a variety of chromosomal loci in 80% of undifferentiated carcinomas with a median number of chromosomal losses or gains of 10 per case with abnormal CGH profile. Gains were more common than DNA losses. Loss of chromosomal DNA was identified at 1p, 2q, 4q, 5q, 6q, 8p, 13q, 22q. Specific chromosomal DNA alterations (i.e. 3p13-14+, 5q11-31-, 11q13+) may be associated with the transition from more differentiated phenotypes to anaplastic thyroid cancer.

Genes involved and Proteins

Note: The genetic mechanisms involved with the development of anaplastic thyroid cancer are poorly understood. ATC are characterized by increased cell replication and high Ki67/Mib1 proliferation index, loss of the apoptotic protein bcl-2 and of Fas and its ligand (usually highly expressed in well differentiated thyroid tumors), by an increase in the proapoptotic protein Bax, by Cyclin D1 over-expression and conversely by a fall in the CDK inhibitor p27. It is not clear whether these changes represent the cause or (more likely) the effect of disregulated cell differentiation and growth in anaplastic cancer.

Mutational inactivation of p53 has been identified in 70-80% of anaplastic carcinomas while H-Ras, K-Ras, or N-Ras activating mutations are present in approximately 50% of the cases. Aberrant Wnt/ beta-Catenin signaling appears to be a distinctive feature of anaplastic thyroid cancer since stabilizing mutations and/or aberrant beta-Catenin nuclear localization are present in 80% of ATC. beta-Catenin nuclear localization is accompanied by its cellular redistribution with marked decrease of the beta-Catenin membrane bound fraction.

References

This article should be referenced as such: