t(1;21)(p32;q22)

Charles D Bangs

Cytogenetics Laboratory, Rm. H1517, Stanford Hospital and Clinics, 300 Pasteur Dr. Stanford, CA 94305, USA (CDB)

Published in Atlas Database: June 2003

Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0121p32q22ID1259.html

DOI: 10.4267/2042/37990

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.

Disease

Acute myelomonoblastic leukemia (M4 by FAB subtype).

Phenotype/cell stem origin

CD34+, DR+, CD117+, CD15+, CD13+, CD33+, MPO+, CD64+ blast population consistent with ANLL-M4 by FAB subtype.

Etiology

Unknown, reported agricultural chemical exposure in single case.

Epidemiology

Single case involving 25 year old male.

Clinics

Patient presented w/o palpable adenopathy, gingival hyperplasia, systolic murmur, hepatosplenomegaly and petechia. WBC was normal with anemia and thrombocytopenia.

Cytology

Predominately large blasts with moderate cytoplasm, smooth nuclear chromatin, and pro-minent nucleoli, folded nuclear contours present in blast subset.

Treatment

Patient lost to treatment.

Evolution

Unknown.

Prognosis

Unknown.

Cytogenetics

Cytogenetics morphological

Single case presented with second copy of der(1)t(1;21).

Cytogenetics molecular

AML1 fusion suggested by partial translocation of 500 kb probe signal to der(1)t(1;21).

Probes

Commercially available 500 kb AML1 probe.

Genes involved and proteins

Note

The putative 1p32 gene partner is unknown. Cryptic t(12;21) TEL(ETV6)/AML1 rearrangement is unlikely due to normal TEL metaphase FISH signal using commercial TEL/AML1 probe.

AML1

Location

21q22

DNA/RNA

AML1 is oriented 3’ toward the centromere.

Protein

Contains a runt domain and at C-term a tranactivation domain; forms heterodimers, widely expressed; nuclear localization; transcription factor (activator) for various hematopoietic-specific genes.
Chromosome and FISH images showing:
1) partial karyotype and ideogram of t(1;21)(p32;q22) including a second copy of the der(1)t(1;21) present in the clone; and
2) metaphase FISH showing red AML1 signal on the two copies of the der(t)(1;21), the der(21)t(1;21) and the normal 21 homolog. Green TEL signal is present of both 12 homologs indicating that no cryptic TEL/AML1 gene rearrangement is present. The adjacent interphase nucleus shows four AML1 signals and two TEL signals consistent with the metaphase pattern.

To be noted

Case Report
t(1;21)(p32;q22) as a non-random abnormality in AML M4

References

This article should be referenced as such: