ELL (eleven nineteen lysin rich leukemia gene)

Jay L Hess

Department of Pathology, The University of Michigan, M5240 Medical Science I, 1301 Catherine Avenue, Ann Arbor, MI 48109-0602, USA (JLH)

Published in Atlas Database: April 2003
Online updated version: http://AtlasGeneticsOncology.org/Genes/ELL.html
DOI: 10.4267/2042/37958

This article is an update of:

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2003 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: MEN (myeloid eleven nineteen translocation: WARNING: unrelated to MEN1 and MEN2); ELL-PEN
HGNC (Hugo): ELL
Location: 19p13.1
Local order: proximal from LYL1 in 19p13.2-p13.1; ENL and E2A are more distal in 19p13.3.

DNA/RNA

Transcription
Alternate splicing; 4.4 and 2.8 kb mRNA; coding sequence: 1.9 kb.

Protein

Description
621 amino acids; 68 kDa; contains a Lysin rich domain (basic motif).

Expression
Wide; especially in leukocytes, muscle, testis, placenta.

Localisation
Nuclear, except the nucleolus.

Function
RNA polymerase II elongation factor, promotes transcription by suppressing transient pausings. In Drosophila ELL is associated with active sites of transcription in vivo. Overexpression of ELL is toxic, suggesting the normal protein may play a role in the regulation of cell growth and survival.

Homology

ELL2, ELL3

Implicated in

t(11.19)(q23;p13.1) /ANLL --> MLL-ELL

Disease
Mainly M4/M5; treatment related leukemia; all ages.

Prognosis
Very poor.

Cytogenetics
Detected with R banding.

Hybrid/Mutated gene
5’ MLL - 3’ ELL

Abnormal protein
Similar to other MLL fusion proteins. The amino terminal AT hook and DNA methyltransferase homology regions from from MLL are fused to most of ELL.

Oncogenesis
The carboxyl terminal region of ELL is required for transformation by MLL-ELL in murine bone marrow transformation assays. This region has potent transcriptional activating activity, and interacts with EAF1, a protein that shares homology with AF4, LAF4, and AF5q31. Interestingly the EAF1 interacting domain, but not the ELL elongation domain is required for transformation. ELL has also been reported to interact withp53 and inhibit its transcriptional activating activity.
References


DiMartino JF, Miller T, Ayton PM, Landewe T, Hess JL, Cleary ML, Shilatifard A. A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood. 2000 Dec 1;96(12):3887-93


Gerber M, Ma J, Dean K, Eissenberg JC, Shilatifard A. Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo. EMBO J. 2001 Nov 1;20(21):6104-14


This article should be referenced as such: