t(11;14)(p15;q11)

Jacques Boyer

Laboratoire d'Hématologie, CH du MANS, France (JB)

Clinics and pathology

Disease
T-cell acute lymphoblastic leukemia T-ALL.

Phenotype/cell stem origin
Apparently, this translocation is not restricted to a single maturational stage. Among five cases reported in the literature: 2 of 4 cases tested coexpressed CD4 and CD8 antigens and 2 cases showed a more immature phenotype like Pro T-ALL: cytCD3+ CD3- CD4- CD8- CD34+.

Epidemiology
The t(11;14)(p15;q11) occurs in less than 1% of patients with T-cell ALL.

Cytology
There is limited knowledge about the clinical and biologic characteristics of patients in whom this translocation is present, all of them have childhood T-cell ALL. In contrast to cases with the t(11;14)(p13;q11) only one patient had a markedly elevated leucocyte count at diagnosis.

Prognosis
Remarkably, no patient with this translocation has sustained durable remission.

Cytogenetics

Cytogenetics morphological
This translocation is not to be confused with the t(11;14)(p13;q11).

Additional anomalies
del(6q), t(17)(q10).

Genes involved and proteins

Rhombotin-1 (= LMO1 = LIM domain only 1, TTG1, RBTN1)

Location
11p15

DNA/RNA
1214 bp. This gene belongs to the Rhombotin family: RBTN1, RBTN2, RBTN3. Complete characterisation of these genes in man and mouse shows that all three encode cysteine-rich proteins with typical LIM domains. The exon organisation of RBTN1 and RBTN3 are similar, both having an intron, absent from the RBTN2 gene, in the LIM2 encoding region.

Protein
RBTN1 and RBTN3 derived proteins have 98% identity in the LIM domain; LMO1 derived protein is a 46 kD nuclear protein. Comparison of the sequence of the human and mouse protein LMO1 shows that the main conserved sequence is a tandemly duplicated cystein-rich-region called LIM domain. LIM domain might facilitate protein-protein interaction which modulates transcription via intermolecular competitive binding between LIM domain and certain DNA-binding transcription factors. The LDB1/NLI is a phosphoprotein and binds to LMO1 in its phosphorylated state and essentially all the LMO1 and LDB1 protein in the T cell is part of the complexe. The stem cell leukemia (SCL) transcription factor is also a partner for LMO1 and LMO2 proteins. RBTN1 and RBTN3 proteins have the same expression pattern in mouse development, since both genes show high expression in the brain, but little lymphoid expression. RBTN2 expression is more ubiquitous.
TCR -alpha

Location
14q11.2

DNA/RNA
The size of TCR alpha/delta locus is about 1 Mb. The TCR delta variable (V) diversity (D) joining (J) and constant region genes are situated within the TCR alpha locus between the TCR alpha V and the TCR alpha J segments. The TCR delta locus contains three D segments and four J segments, whereas the TCR alpha J regions spans approximately 80 kb and contains at least 61 segments. The TCR alpha/delta locus is transcribed in a centromer to telomer direction.

Protein
T-cell receptor.

TCR-delta

Location
14q11.2

DNA/RNA
The size of TCR alpha/delta locus is about 1 Mb. The TCR delta variable (V) diversity (D) joining (J) and constant region genes are situated within the TCR alpha locus between the TCR alpha V and the TCR alpha J segments. The TCR delta locus contains three D segments and four J segments, whereas the TCR alpha J regions spans approximately 80 kb and contains at least 61 segments. The TCR alpha/delta locus is transcribed in a centromer to telomer direction.

Protein
T-cell receptor.

Result of the chromosomal anomaly

Hybrid gene

Description
The translocation t(11;14)(p15;q11) occurs at a T-cell receptor joining J delta segment, 12 kb upstream of the constant C delta gene and 98 kb upstream of the C alpha gene at chromosome band 11q11. Rhombotin gene contains oligomers that span the breakpoint region. This breakpoint region possesses a consensus heptamer: it appears to function as a 23-signal and to synapse with a 12-signal on chromosome 14 in the translocation t(11;14)(p15;q11) but the recombinaison frequency is 20-fold lower than LMO2 and about 530-fold lower than for a normal 23-signal. The 23-signal is a part, as well as the 12-signal, of the RAG complex whose normal function is to initiate the breaks of V(D)J recombinaison.

Fusion protein

Description
No fusion protein.

Oncogenesis
Erroneous V(D)J joining process and alteration of the transcription networks.

References

Valge-Archer V, Forster A, Rabbits TH. The LMO1 and LDB1 proteins interact in human T cell acute leukaemia with the chromosomal translocation t(11;14)(p15;q11). Oncogene. 1998 Dec 17;17(24):3199-202

Chervinsky DS, Lam DH, Melman MP, Gross KW, Aplan PD. scid Thymocytes with TCRbeta gene rearrangements are targets for the oncogenic effect of SCL and LMO1 transgenes. Cancer Res. 2001 Sep 1;61(17):6382-7

This article should be referenced as such: