Cancer Prone Disease Section
Mini Review

Simpson-Golabi-Behmel syndrome

Daniel Sinnett
Division of Hematology-oncology, Research Centre, Sainte-Justine Hospital, 3175 Côte Sainte-Catherine, Montreal, H3T 1C5, Québec, Canada (DS)

Published in Atlas Database: May 2002
DOI: 10.4267/2042/37910
This article is an update of:
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2002 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Inheritance
X-linked with heterogeneity; most families map Xq26; one large pedigree maps to Xp22.

Clinics

Phenotype and clinics
Characterized by a wide variety of clinical manifestations including pre-natal and post-natal overgrowth syndrome SGBS is phenotypically similar to Beckwith-Wiedemann syndrome (BWS) suggesting that at least part of the SGBS phenotype could be due to increased IGF-II signalling.
Xq26: coarse facieses with mandibular overgrowth, cleft palate, heart defects, hernias, supernumerary nipples, renal and skeletal abnormalities.
Xp22: lethal form, multiple anomalies, hydrops fetalis, death within first 8 weeks of life.

Neoplastic risk
Increased risk of embryonal tumors, including Wilms tumor, neuroblastoma; one case of hepatocellular carcinoma reported.

Genes involved and proteins

glypican-3 (GPC3)

Location
Xq26

Protein
Description: GPC3 is highly expressed in embryonal tissues such as the developing intestine and the mesoderm-derived tissues, and its expression is downregulated in most adult tissue, implying a potential role in development. GPC3 is a heparan sulfate proteoglycan (HSPG) that is attached to the cell surface via a glycosyl-phosphatidylinositol (GPI) anchor.
Function: HSPGs of the cell surface are highly interactive macromolecules playing various roles in cell migration, proliferation, differentiation and adhesion, and participating in many developmental and pathological processes.

Mutations
Germinal: Most cases are caused by deletions of different exons in the GPC3 genes. The exact role of GPC3 in the etiology of SGBS is still unknown. The renal dysplasia observed in both SGBS patients and GPC3-deficient mice could be explained by the participation of GPC3 in the control of renal branching morphogenesis by modulating the actions of several different growth factors, including BMP2, BMP7 and fibroblast growth factor 7.

References


This article should be referenced as such: