PLAG1 (Pleomorphic adenoma gene 1)

David Gisselsson

Department of Clinical Genetics, Lund University Hospital, 221 85 Lund, Sweden (DG)

Published in Atlas Database: June 2002

Online updated version: http://AtlasGeneticsOncology.org/Genes/PLAG1ID74.html

DOI: 10.4267/2042/37897

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.

© 2002 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity
HGNC (Hugo): PLAG1
Location: 8q12
Local order: (316 cR / 86 Mb from 8pter)

DNA/RNA

Description
7313 bp, 5 exons, 4 introns.

Transcription
At least two splicing variants, including and excluding the second exon.

Protein

Description
500 amino acids with at least three functional regions: 1. Two N-terminal nuclear localisation signals, 2. Seven canonical zinc-finger domains, 3. A serine rich C-terminus.

Expression
Heart, placenta, spleen, prostate, testis, ovary, small intestine, several tumours.

Localisation
Nuclear.

Function
One of the N-terminal nuclear localisation signals (NLS1) interacts with karyopherin a2, which escorts proteins into the nucleus. Three of the seven Zn-finger domains are responsible for interaction with DNA and PLAG1 specifically activates transcription from its consensus binding site. Potential PLAG1 binding sites have been found in the promoter of IGF2.

Homology
Mouse and rat Plag1.

Mutations

Somatic
Involved in chromosome rearrangements in epithelial and mesenchymal tumours. These are typically complex structural abnormalities, resulting in an exchange of regulatory elements and abnormal expression of PLAG1.

Schematic view of the gene with approximate sizes of introns (kb) and exons (bp); the coding region (violet) translates into a 500 amino acid product with three functional subunits.
Implicated in

Pleomorphic adenoma of the salivary gland

Disease
Benign epithelial tumour.

Prognosis
Recovery after surgical removal.

Cytogenetics
The most common breakpoints are 3p21, 8q12, and 12q15.

Hybrid/Mutated gene
The following translocations have been reported to result in hybrid genes involving PLAG1:
- t(3;8)(p21;q12): CTNNB1/CTNNB1/PLAG1
- t(5;8)(p13;q12): LIFR/PLAG1

Also, rearrangements between PLAG1 and TCEA1 have been detected in cases with normal karyotypes.

Abnormal protein
Fusions occur in the 5′ regulatory regions, leading to promoter swapping and activation of PLAG1 expression while preserving coding sequences.

Carcinoma ex pleomorphic adenoma

Disease
Malignant epithelial tumour arising from pleomorphic adenoma.

Prognosis
30% five-year survival.

Cytogenetics
Complex karyotype including t(3;8)(p23;q12).

Hybrid/Mutated gene
Intragenic PLAG1 rearrangements demonstrated by fluorescence in situ hybridisation.

Lipoblastoma

Disease
Benign fat-forming tumour of childhood.

Prognosis
Recovery after surgical removal.

Cytogenetics
Structural abnormalities involving 8q11-13.

Hybrid/Mutated gene
The following rearrangements have been reported to result in hybrid genes involving PLAG1:
- del(8)(q12q24), r(8); HAS2/PLAG1
- t(7;8)(p22;q13); COL1A2/HAS2

Abnormal protein
Fusions occur in the 5′ regulatory regions, leading to promoter swapping and activation of PLAG1 expression while preserving coding sequences.

References

Voz ML, Aström AK, Kas K, Mark J, Stenman G, Van de Ven WJ. The recurrent translocation t(5;8)(p13;q12) in pleomorphic adenomas results in upregulation of PLAG1 gene expression under control of the LIFR promoter. Oncogene. 1998 Mar;16(11):1409-16

Voz ML, Agten NS, Van de Ven WJ, Kas K. PLAG1, the main translocation target in pleomorphic adenoma of the salivary glands, is a positive regulator of IGF-II. Cancer Res. 2000 Jan 1;60(1):106-13

Hensen K, Van Valckenborgh IC, Kas K, Van de Ven WJ, Voz ML. The tumorigenic diversity of the three PLAG family members is associated with different DNA binding capacities. Cancer Res. 2002 Mar 1;62(5):1510-7

This article should be referenced as such: