Gene Section
Mini Review

P53 (Protein 53 kDa)
Thierry Soussi

Laboratoire de Genotoxicologie des tumeurs, Institut Curie, Universite Pierre et Marie Curie, 26 rue d’Ulm, 75005 Paris, France (TS)

Published in Atlas Database: December 2001
Online updated version: http://AtlasGeneticsOncology.org/Genes/P53ID88.html
DOI: 10.4267/2042/37831

This article is an update of:

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2002 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: TP53 (Tumour Protein 53)
HGNC (Hugo): TP53
Location: 17p13

DNA/RNA

Description
The gene encompasses 20 kb of DNA; 11 exons (the first is non-coding).

Transcription
3.0 kb mRNA; 1179 bp open reading frame.

Protein

Description
393 amino acids; 53 kDa protein; numerous post translational modifications, phosphorylation, acetylation, ubiquitination; contains from N-term to C-term, a transactivation domain (1-42), a Proline rich domain (63-97), a specific DNA binding domain (102-292), 3 nuclear localization signals (305-322), a tetramerization domain that include a nuclear export signal (325-355) and a negative regulatory domain (360-393).

Expression
Widely expressed.

Localisation
Nucleus.

Function
Tumour suppressor gene. P53 is a transcription factor present at minute level in any normal cells. Upon various types of stress (DNA damage, hypoxia, nucleotide pool depletion, viral infection, oncogene activation), posttranslational modification lead to p53 stabilisation and activation. Although the number of genes activated by p53 is rather large, the outcome of p53 activation is either cell cycle arrest in G1 (by p21), in G2 (by 14-3-3 g) or apoptosis (by BAX, PUMA or NOXA). The cell growth arrest activity of p53 allows the activation of the DNA repair system of the cell.

Homology
The five domains are highly-conserved regions between species (from human to fly). Two new genes homologous to p53 have been discovered, p73 localized at 1p36 and p63 localized at 3q27.
Mutations

Germinal
In Li-Fraumeni syndrome, a dominantly inherited disease in which affected individuals are predisposed to develop sarcomas, osteosarcomas, leukemias and breast cancers at unusually early ages.

Somatic
P53 is mutated in about 50% of human cancers, and the non-mutated allele is generally lost; the frequency and the type of mutation may vary from one tumour type to another; these mutations are missense (80%), non-sense (7.5%), deletions, insertions or splicing mutations (12.5%); there are some hot-spots for mutations at CpG dinucleotides at positions 175, 248, 273 and 282; P53 mutation is an adverse prognostic feature in a number of cancer, but not in all. Mutational events are related to carcinogen exposure in lung, liver and skin cancer.

Implicated in

Li-Fraumeni syndrome

Disease
Autosomal dominant condition; cancer prone disease; Li-Fraumeni syndrome is defined by the existence of both a proband with a sarcoma and two other first-degree relatives with a cancer by age 45 years; a germline mutation of P53 is found in at least 50% of cases; germline mutation of the kinase CHK2, an activator of p53, has been discovered in several Li-Fraumeni families free of p53 mutation.

Prognosis
Most common cancer in Li-Fraumeni children are: soft tissues sarcoma before the age of 5 yrs and osteosarcoma afterwards, and breast cancer in young adults; other frequent cancers: brain tumours, leukemias, adrenocortical carcinoma; 1/3 of patients have developed more than one primary cancer, which is quite characteristic of Li-Fraumeni syndrome but may also represent Bloom's syndrome; cancers in this disease, as in other cancer-prone diseases, often occur early in life: 50% of patients aged 30 yrs have had a cancer (i.e. penetrance is 50%, according to this disease definition); and penetrance is 90% at age 60 yrs.

Oncogenesis
Known germinal mutation are variable, but are mostly missense mutations located in exons 4 to 9 in tumours occurring in these patients, the other (wildtype) allele is lost, in accordance with the two-hit model for neoplasia, as is found in retinoblastoma.

Haematological malignancies

Oncogenesis
P53 gene alterations have been found in: 20-30% of blast crisis CML (mostly in the myeloid type), often associated with i(17q); in 5% of MDS cases and 15% of ANLL often with a visible del(17p); in 2% of ALL (but with high variations according to the ALL type, reaching 50% of L3 ALL (and Burkitt lymphomas); in 15% of CLL (and 40% in the aggressive CLL transformation into the Richter's syndrome) and 30% of adult T-cell leukaemia (only found in the aggressive form), in 5-10% of multiple myelomas; in 60-80% of Hodgkin disease; in 30% of high grade B-cell NHL (rare in low grade NHL), and 50% of HIV-related NHL; P53 gene alterations in haematological malignancies are associated with a poor prognosis.

Lung cancers

Disease
Lung cancers are neuroendocrine lung tumours (small cell lung carcinomas, carcinoids, large cell neuroendocrine carcinomas) or non neuroendocrine lung tumours (squamous carcinomas, adenocarcinomas, large cell carcinomas).

Oncogenesis
Is multistep, through C-MYC or N-MYC activation, H-RAS1 or K-RAS2 mutation, P53, RB1, and P16 inactivation, loss of heterozygosity (LOH) at 3p, 13q, 17p; P 53 mutations, in this particular case, does not seem to have prognostic implication; P53 is mutated in 30% of lung adenocarcinomas to 80% of small cell lung carcinomas; hotspots at codons 157, 158, 179, 245, 248 and 273. p53 mutations in lung cancer from smoker have a very specific pattern related to carcinogen exposure (high frequency to GC->TA transversion and hot spot at codon 157 and 158).

Colorectal cancers

Disease
There are two types of colorectal cancers, according to the ploidy:
- the diploid form, RER+ (Replication Error+), sporadic, without loss of heterozygosity (LOH), with few mutations of p53 and APC, and right-sided;
- the polyploid form, RER-, with LOH (5q, 17p, 18q), mutations in p53, and more often left-sided, they have a worse prognosis.

Prognosis
Survival, although improving, is not much more than 50% after 5 years.

Cytogenetics
Diploid tumours without frequent allelic losses; aneuploid tumours with numerous allelic losses; LOH on chromosomes 17 and 18 in more than 75% of cases; other chromosome arms losses in about 50% of cases.

Oncogenesis
A number of genes are known to be implicated in tumour progression in colorectal cancers: APC, P53, KRAS2, mismatch repair genes (MMR genes); P53 is mutated in 60-65% of colorectal cancer cases;
mutations of P53 are mostly located in exons 4 to 8 with hotspots at codons 175, 245, 248, 273 and 282.

Bladder cancer

Prognosis
Highly variable, according to the stage and the grade.

Cytogenetics
-9, -11 or del(11p), del(17p) and LOH at 17p, del(13q), frequent other LOH, aneuploidy, polyploidy, complex karyotypes.

Oncogenesis
Multi-step and largely unknown process; loss of 9q and P53 mutations would be early events; RB1, and P16 inactivation, EGFR overexpression, LOH at 3p, 8p, 11p, 13q, 17p, 18q; P53 is mutated in 40-60% of bladder cancer cases; P53 mutations bear a prognostic implication.

Breast cancer

Prognosis
P53 mutation bears a prognostic implication in N+ patients and is related to poor response to doxorubicin therapy.

Oncogenesis
P53 is mutated in 30% of breast cancers; preferentially observed in advanced and aggressive forms; probably a late event; hotspots at codons 175, 248, and 273. The frequency and pattern of p53 mutation in breast cancer is subject to important geographical variations.

Skin cancers

Disease
Skin cancers include basal cell carcinomas, squamous cell carcinomas, and melanomas.

Prognosis
Highly different according to the pathological group.

Oncogenesis
P53 is mutated in 40-60% of skin cancers; hotspots at codons 196, 248, 278. The pattern of p53 mutation in skin cancer is highly related to UV exposure.

Oesophagus cancers

Disease
Two main forms: squamous cell carcinoma and adenocarcinoma.

Oncogenesis
P53 is mutated in 50% of oesophagus cancers (70% in squamous cell carcinoma and 45% of adenocarcinoma); probably an early event; hotspots at codons 175, 248 and 273. The pattern of p53 mutation is different in squamous cell carcinoma and adenocarcinoma.

Liver cancer

Cytogenetics
Losses of 1p, 4q, 5p, 5q, 8q, 13q, 16p, 16q, and 17p in 20 to 50% of cases.

Oncogenesis
Specific mutation at codon 249 related to aflatoxin B1 dietary exposure in exposed area (China, Africa); low frequency of mutation in developed countries.

Prostate cancer and other cancers

To be noted

Note
Germinal mutations of P53 have also been found in families where the criteria for the Li-Fraumeni syndrome were not reached.

References

This article should be referenced as such: