Dyskeratosis congenita (DKC)

Claude Viguié

Service de Dermatologie, Hôpital Tarnier-Cochin, 89 rue d'Assas, 75006 Paris, France (CV)

Published in Atlas Database: August 2001
Online updated version : http://AtlasGeneticsOncology.org/Kprones/DyskeratosisID10034.html
DOI: 10.4267/2042/37802

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2001 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Alias
Zinsser Cole Engeman syndrome ; Hoyeraal Hreidarsson syndrome

Note
Hoyeraal Hreidarsson syndrome is a more severe variant.

Inheritance
X-linked recessive form constitute more than 80% of cases and 91% of DKC patients are males.

Clinics

Note
The disease is characterised by a multisystem failure, affecting essentially tissues with a high proliferation rate: skin, mucous membranes, bone marrow.

Phenotype and clinics
Short stature (16%).
Cutaneous signs:
Hyperpigmentation, telangiectasia, atrophy (poikiloderma);
Dystrophic nails and palmoplantar keratoderma, hyperhidrosis;
Mucosal leucoplakia;
Dental caries or loss (18%);
Blepharitis, conjunctivitis, epiphora (36%);
Sparse eyebrows / eyelashes;
Alopecia (16%);
Urethral stricture, phimosis (7%).
Bone marrow failure, peripheral pancytopenia (93%).
Others signs:
Oesophageal stricture (14%);
Pulmonary fibrosis (19%);
Liver cirrhosis (5%);
Hypogonadism (8%);
Abnormal bone trabeculation, osteoporosis (4%)
Immune abnormalities: reduced or increased immunoglobulin level, T- and/or B-lymphocyte deficiency.
Mild Mental Retardation, learning difficulties (21%).

Prognosis
The major part of patients die before 20 years, mainly from infectious complications of immune deficiency. 90% of patients have haematological abnormalities when 30 year-old, and bone marrow failure is the main cause of early morbidity in 71% of cases. It can evolve toward aplastic anemia or myelodysplasia.
The mucosal leucoplakia can transform into spinocellular carcinoma.
Other carcinomas can develop during the third decade of life: lung, colon, larynx, oesophagus, pancreas, Hodgkin disease.

Cytogenetics

Inborn conditions
An excess of chromosome breakages has been reported in DKC but this finding is controversial; not frequently, rearrangements comparable to what is observed in Fanconi anemia are described: chromosome instability and breakage (di- and tricentric chromosomes), either spontaneous or induced by clastogenic agents (mitomycin C). Cells with a high turn-over (skin fibroblasts, lymphocytes, bone marrow cells, digestive tract) would be particularly sensitive to chromosome rearrangements and DNA damage.
Leucokeratosis of the tongue, poikilodermia of the foot and the trunk, onychopathy. Courtesy Daniel Wallach.

Genes involved and proteins

DKC1

Location

Xq28

Protein

Description: DKC1 encodes for Dyskerin, a 514 aminoacid protein

Expression: Widespread tissue repartition.

Function: Dyskerin is the nucleolar pseudouridine synthetase component of the box H+ACA snoRNAs. It also interacts with the RNA component of human telomerase. Chromosome instability could be linked to increased telomere shortening due to an alteration in telomerase-dependant telomere maintenance. DKC1 plays a role in ribosomal RNA synthesis and in ribosome biogenesis; DKC is a human ribosomopathy.

References

This article should be referenced as such: