Nervous system: Ependymomas

Anne-Marie Capodano

Laboratoire de Cytogénétique Oncologique, Hôpital de la Timone, 264 rue Saint Pierre, 13005 Marseille, France (AMC)

Published in Atlas Database: April 2001
Online updated version : http://AtlasGeneticsOncology.org/Tumors/EpendymomID5016.html
DOI: 10.4267/2042/37764

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2001 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Note: Ependymomal neoplasms are tumors of children and young adults, originating from the cerebral ventricle or from the spinal canal. In the central nervous system (CNS), they account for 3.9 % of all neuro-epithelial tumors.

Classification

Ependymomas are well-delineated moderately cellular gliomas. Histological features are perivascular pseudo rosettes and ependymal rosettes. WHO classification differentiate four major types:

1. Ependymoma and variants (grade II):
 - Cellular ependymoma: a variant of ependymoma with conspicuous cellularity but often less prominent pseudo-rosette or rosette formation.
 - Papillary ependymoma: a rare variant which looks like choroid plexus papilloma.
 - Clear cell ependymoma: a variant which may be confused with oligodendroglioma neurocytoma or metastatic renal cell carcinoma.

Histological feature of ependymoma: perivascular rosettes - Anne Marie Capodano.

3. Myxopapillary ependymoma (grade I): It occurs almost exclusively in the conus-cauda-filum terminale region, with a generally favourable prognosis.

Clinics and pathology

Epidemiology

In children, 30% of ependymomas appear before the age of 3 years and are more aggressive than in adults. Nearly 90% of pediatric ependymomas are intracranial: they occur in supratentorial or posterior fossa locations, and only 10% are intraspinal. Ependymomas account for 6 to 12% of brain tumors in children and represent the third most common central nervous system neoplasms in this age range, following astrocytoma and medulloblastoma.

In adults, 60% of ependymomas are tumors of spinal cord and only 40% are intracranial. Intramedullary spinal ependymomas can be seen in patients with neurofibromatosis type 2 (NF2), a hereditary disease. Clustering of ependymomas has been noted in some families suggesting inheritance of a genetic susceptibility to this type of tumor.

Clinics

Clinical manifestations of these tumors are localization dependent.

Pathology

Immunohistochemistry: The great majority of ependymomas display GFAP immunoreactivity. It is usually observed in pseudo-rosettes, but GFAP is not specific of ependymomas. It is observed in all gliomas. Ependymomas typically express S 100 protein and Vimentin. In ependymomas WHO grade II, epithelial membrane antigen (EMA) immunoreactivity has been reported.

Treatment

The treatment of ependymomas is mainly exeresis of tumor and radiotherapy after exeresis.

Prognosis

Ependymoma is a recurrent tumor. The identification of parameters with prognostic value in ependymomas is very important, but controversial. By order of importance the following factors are considered:

- Age and extent of resection
- Prognosis in children is significantly worse than in adults. The children's cancer group reported a 5 year progression-free survival of 5% in children with intracranial ependymomas. A retrospective analysis of 83 pediatric ependymomas revealed are below 3 years incomplete tumor resection as indication of a poor outcome.

In adult patients survival at 10 years is 45%. Complete or near complete resection emerged as an independent prognostic factor.

Localization

Supratentorial ependymomas are associated with better survival rates compared to posterior fossa tumors. Spinal ependymomas are associated with better outcome than cerebral tumors. Cerebrospinal localization shows a poor prognosis.

Cytogenetics

Partial karyotype of a cell of ependymoma: 46, XX, del(22)(q11) with R-banding - Anne Marie Capodano.

Cytogenetics Morphological

No specific cytogenetic abnormality has been described but ependymomas with 30% incidence of aberrations involve chromosome 22 as the most frequent change. Monosomy 22 as well as deletions or translocations involving 22q can appear. Less frequent are structural abnormalities of chromosomes 1, 6, and 17 and numerical abnormalities of 7, 9, 12 and 20. Monosomy 10 was reported in few cases of anaplastic ependymomas associated with LOH of 17p. Monosomy 13 was observed in eight cases half of which occurred in paediatrics patients. Rearrangements or deletions of chromosome 6 were reported in five tumors.

Genes involved and proteins

Note

Genes involved in ependymomas remain to be uncovered. Mutations or deletions of the tumor suppressor genes CDKN2A and CDKN2B and amplification of CDK4 or CCND1 have been reported. Mutations of TP53 were occasionally observed in ependymomas.

Increased incidence of ependymomas in neurofibromatosis type 2 has suggested that NF2 represents an obvious candidate gene. Some authors have presented evidence for mutations of NF2 suppressor gene at 22q12. Whereas others have been unable to identify such mutations of the NF2. Investigators show that the most frequently recurrent genomic loss in ependymomas does not involve the proximal 22q11.2 chromosome region. They suggest
that another not-yet identified tumor suppressor gene located distally to the HSNF5/INT1 locus on the 22q and independent of NF2 locus may be involved in ependymomas.

References

Rubio MP, Correa KM, Ueki K, Mohrenweiser HW, Gusella JF, von Deimling A, Louis DN. The putative glioma tumor suppressor gene on chromosome 19q maps between APC2 and HRC. Cancer Res. 1994 Sep 1;54(17):4760-3

This article should be referenced as such: