Bloom syndrome

Mounira Amor-Guéret

Institut Curie - Section de Recherche, UMR 2027 CNRS, Batiment 110, Centre Universitaire, F-91405 Orsay Cedex, France (MAG)

Published in Atlas Database: September 2000

Online updated version : http://AtlasGeneticsOncology.org/Kprones/BLO10002.html

DOI: 10.4267/2042/37677

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2000 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Micronuclei (left); sister chromatid exchange (right) in a normal subject (herein: 19 SCE, instead of the hundred found in Bloom, see below) - JL Huret.

Inheritance

Autosomal recessive; frequency is about $2/10^5$ newborns in Ashkenazi Jews and in the Japanese (founder effect: affected persons descent from a common ancestor); much rarer otherwise.

Clinics

Note

168 cases have been registered in the Bloom's syndrome Registry by James German; BS patients are
predisposed to all types of cancer observed in the general population; thus, BS is a model of initiation and promotion of cancer, and highlights internal causes/processes of cancers.

Phenotype and clinics
- Phenotypic spectrum variable;
- Growth: dwarfism; intrauterine growth retardation; birth weight: below 2.3 kg; mean length: 44 cm; adult length < 145 cm;
- Skin: hyperpigmented (cafè au lait) spots; hypopigmented areas; sun sensitive telangiectatic erythema; in butterfly configuration across the face: resembles lupus erythematosus;
- Head: microcephaly; dolichocephaly; narrow face; prominent nose and/or ears; characteristic high-pitched voice;
- Normal intelligence;
- Immune deficiency -- frequent infections (may be life-threatening);
- Other: myocardopathy; hypogonadism in male patients; hypertriglyceridemia.

Neoplastic risk
Nearly half of patients have had at least one cancer (10% of whom having had more than one primary cancer, which is quite characteristic of Bloom's); mean age at first cancer onset: 25 years (range: 2-49 years): Acute leukaemias (ALL and AML) in 15% of cases; lymphomas in 15% as well; these occur mainly before the thirties. Carcinomas (of a wide variety) occur in 30% of cases, mainly after the age of 20 years. Benign tumours (10%).

Evolution
Major medical complications apart from cancers are: chronic lung disease, and diabetes mellitus (in 10%).

Prognosis
1/3 of patients are dead at mean age 24 years (oldest died at 49 years, youngest died before 1 year), and the mean age of the 2/3 remaining alive patients is 22 years (range: 4-46 years).

Cytogenetics

Inborn conditions
Chromatid/chromosome breaks; triradial and quadriradial figures, in particular symmetrical quadriradial configuration involving homologous chromosomes (Class I qr), which are pathognomonic and which may be due to a mitotic crossing-over. Diagnosis is on the (pathognomonic) highly elevated spontaneous sister chromatid exchange rate (90 SCE per cell; more than 10 times what is normally found); in some persons a minor population of low SCE cells exists, suggesting a recombination event between maternal and paternal alleles (with different mutations), giving rise to a wild type functional gene; this allowed to localize the gene in a very elegant strategy. Heterozygotes are not detectable by cytogenetic studies.
Other findings

Note
Slowing of the cell cycle (lenthening of the G1 and S phases).
Spontaneous mutation rate 10 times higher than normal cells.

Genes involved and proteins

Note
No complementation group.

BLM

Location
15q26.1

Protein
Description: 1417 amino acids; contains one ATP binding site, one DEAH box, and two putative nuclear localization signals.
Expression: Accumulates to high levels in S phase of the cell cycle, persists in G2/M and sharply declines in G1; hyperphosphorylated in mitosis.
Localisation: Nuclear.
Function: 3'-5' DNA helicase; probable role in DNA replication and repair.
Participates in a supercomplex of BRCA1-associated proteins named BASC (BRCA1-Associated genome Surveillance Complex).
Recombinant protein promotes ATP-dependent branch migration of Holliday junctions.
Homology: Homology with the RecQ helicases.

Mutations
Germline: Five BLM mutations introducing amino acid substitutions and four BLM mutations introducing premature nonsense codons into the coding sequence have been described to date; one BLM mutation consisting in a 6 bp deletion accompanied by a 7 bp insertion at nucleic acid position 2281 is common in patients from Ashkenazi Jewish ancestry, leading to a truncated protein of 739 amino acids in length; the mutated BLM protein is totally or partially is retained in the cytoplasm, while the normal protein is nuclear.

References

German J. Bloom's syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet. 1997 Jan;93(1):100-6

This article should be referenced as such: