Bladder: transitional cell carcinoma

Jean-Loup Huret, Claude Léonard

Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France (JLH), Cytogenetique, Laboratoire d'Anatomo Pathologie, CHU Bicetre, 78 r Leclerc, F94270 Le Kremlin-Bicetre, France (CL)

Published in Atlas Database: October 2000

Online updated version : http://AtlasGeneticsOncology.org/Tumors/blad5001.html
DOI: 10.4267/2042/37676

This article is an update of:

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.

© 2000 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Classification

Existence of different histologic types:
- Transitional cell carcinoma of the bladder, herein described,
- Squamous cell carcinoma,
- Adenocarcinoma (2%), rare,
- Poorly differentiated carcinoma/small cell carcinoma, exceptional.

Clinics and pathology

Disease
Cancer of the urothelium.

Epidemiology
Transitional cell carcinoma is the most frequent bladder cancer in Europe and in the USA, representing 90-95% of cases, while squamous cell carcinoma represents...
only 5% in these countries, but up to 70-80% of cases in the Middle East. Annual incidence: 250/10³, 2% of cancers, the fourth cancer in males, the seventh in females, 3M/1F. Occurs mainly in the 6th-8th decades of life. Risk factors: cigarette smoking and occupational exposure (aniline, benzidine, naphtylamine); 20 to 30 years latency after exposure.

Clinics

Hematuria, irritation.

Pathology

Grading and staging: tumours are:

- pTIS carcinoma in situ (but high grade), and
- pTa papillary carcinoma, both mucosally confined;
- pT1 lamina propria invasive;
- pT2 infiltrates the superficial muscle, and
- pT3a, the deep muscle;
- pT3b invasion into perivesical fat;
- pT4 extends into neighbouring structures and organs.

Treatment

Resection (more or less extensive: electrofulguration -- > cystectomy); chemo and/or radiotherapy, BCG-therapy.

Evolution

Recurrence is highly frequent.

Prognosis

According to the stage and the grade; pTa is of good prognosis (> 90% are cured); prognosis is uncertain in pT1 and G2 tumours, where cytogenetic findings may be relevant prognostic indicators. 20% survival at 1 year (stable at 3 years) is found in T4 cases; however, identification of individual patient's prognosis is often difficult, although of major concern for treatment decision and for follow up.

Cytogenetics

Cytogenetics Morphological

Highly complex: pseudo diploid karyotypes with only a few abnormalities in early stages, evolving towards pseudo-tetraploides hyper complexes karyotypes with numerous unrecognizable markers in advanced stages; pseudo-octoploidy may arise; the most frequent anomalies are: +7, -9, -11 or del(11p), del(13q), del(17p), and rearrangements of chromosomes 1, 5, and 10; monosomy 9 is a very early event, that may even appear at the dysplastic stage; we will use indifferently the terms deletion and loss of heterozygocity (LOH) for chromosome regions, and preferably LOH for genes.

Chromosome 3: implicated in 30%, mostly in complex karyotypes; amplifications 3p21-24, 3q24 have been found; del(3p) is associated with high grade/stage.

Chromosome 4: deletions in 20%, in particular in 4p16 and 4q13-23; amplification of 4q26 has been noted.

Chromosome 5: i(5p) occurs in 35% of cases.

Chromosome 6: del(6q) in 25%; may be correlated with tumour invasion.

Chromosome 7: trisomy 7 is frequent in this cancer, as well as in many other cancers, but also in normal tissues; may still be of bad prognostic significance.

Chromosome 8: del(8p) in 25%; deletion of 8p12-pter, 8p22 in particular, may be associated with high grade/stage; gains of 8q (especially 8q23-qter) may be associated with tumour progression; however, C-MYC (8q24) is rarely amplified.

Chromosome 9: monosomy 9 or deletions of chromosome 9 are found in about 50% of cases; at times found as the sole anomaly, demonstrating that it is an early event, found equally in TPa stage and in more advanced stages; not associated with a given grade, and not correlated with P53 expression; it has, however, recently been hypothesised that monosomy 9 could indicate a risk of recurrence; LOH appear to be numerous with a given chromosome (e.g. LOH in 9p21, 9q22, 9q31-32, 9q33 and 9q34), but loci remain to be precised, as reports are controversial; homozygous deletions of CDKN2A/MTS1/P16 (9p21) have been documented; LOH + mutation on the second allele of CDKN2A are rare, but of significance; CDKN2A is implicated in Pta stage but not in PTIS, where P53 is found mutated; CDKN2B/INK4B/P15 (9p21) is also implicated in a small subset of cases; PAX5 (9p13) may be over-expressed in tumours; GSN (9q34) has a very low expression in tumours in comparison with its expression in normal bladder; LOH + mutation on the second allele of TSC1 (9q33-34) has recently been described.

Chromosome 10: del(10q23-25) has been noted; PTEN (10q23), appears to be implicated in a very few percentage of cases (homozygote deletion has been found); Fas/APO1/CD95 (10q24); loss of one allele and mutation in the second allele has been reported; a hot-spot of mutations has been determined; amplification 10q13-14 has been found.

Chromosome 11: monosomy 11 or del(11p) is found in 20 to 50% of cases, more often in high grade and invasive tumours, associated with tumour progression, often found at the time of tetraploidisation; LOH in 11p15.1-p15.5; HRAS1 (11p15.5) is mutated in 15% of cases; amplifications of 11q13-22 have been noted, but would not be a prognostic factor.

Chromosome 12: del(12q) in 20%; amplification of 12q13-15 and/or 12q15-24 may be found.

Chromosome 13: del(13q) is found in 25% of cases; correlated with high grade/stage; an altered Rb (13q14) is expressed in 30 to 40% of tumours; these are high
stage, invasive, and indicate a short survival; 90% of tumours expressing Rb are invasives; disruption of the normal P16-Rb interactions have been documented, with hyperexpression of Rb and loss of function of P16; amplification in 13q21-31 has been noted.

Chromosome 14: del(14q) in 25% of cases (especially 14q12 and 14q32); may be associated with tumour progression.

Chromosome 17: del(17p) in 40% of cases; LOH are mainly in 17p12-13, 17q11-22, and 17q 24-25; del(17p) is a late event, mainly found in pT2 to pT4; also found in a subset of pTIS, which might be a relevant prognostic indicator for these tumours; P53 (17p13) alterations are correlated with grade and stage (often PT3), and tumour progression; P53 is mutated in more than 50% of high grade/stage tumours, and in most PTIS; P53 is a prognostic factor: by high grade/stage tumours, those expressing P53 are of better prognosis; by low grade/stage, those not expressing P53 are of better outcome; there is usually LOH + mutation on the second allele of P53; ERBB2/P185 (17q21) is expressed in high grade/stage tumours, in metastases, and is associated with relapses; NF1 (17q11) expression may be very low in tumours; amplification of 17q22-23 has been noted.

Chromosome 18: del(18q) in 25%; associated with high grade/stage; amplifications of 18q11 and 18q22 have been found.

Chromosome 22: amplification of 22q11-12 has been noted.

Chromosome Y: Y loss in 30%; probably not associated with stage, grade, Ki67, or P53 expression.

Other: double minute are found in high grades/stages; multifocal tumours exhibit genomic instability; this genomic instability is already present in normal tissues and is increased in tumour tissues from the same specimens, suggesting that a general genetic instability is a reason for multifocality.

Cytogenetics Molecular

Flow cytometry for DNA index measurement has been used in the past, but comparative genomic hybridization (CGH) is now a major tool for deletions and duplications determination; multi-FISH (M-FISH) could be very useful in early-stage cases (with pseudodiploid karyotypes) to determine structural rearrangements.

Genes involved and proteins

Note
The process 1- is multistep, 2- can take major and minor routes, still to be determined; genes involved in transitional cell carcinoma of the bladder are therefore numerous and most are still unknown; some are quoted above.

References

Olumi AF, Tsai YC, Nichols PW, Skinner DG, Cain DR, Bender LI, Jones PA. Allelic loss of chromosome 17p distinguishes high grade from low grade transitional cell carcinomas of the bladder. Cancer Res. 1990 Nov 1;50(21):7081-3

Bladder: transitional cell carcinoma

Huret JL, Léonard C

Knowles MA, Shaw ME, Proctor AJ. Deletion mapping of chromosome 8 in cancers of the urinary bladder using restriction fragment length polymorphisms and microsatellite polymorphisms. Oncogene. 1993 May;8(5):1357-64

Eldridge PA, Bell SM, Knowles MA. Deletion of two regions on chromosome 4 in bladder carcinoma: definition of a critical 750kB region at 4p16.3. Oncogene. 1994 Dec;9(12):3433-6

Simoneau AR, Spruck CH 3rd, Gonzalez-Zulueta M, Gonzalgo ML, Chan MF, Tsai YC, Dean M, Steven K, Horn T, Jones PA. Evidence for two tumor suppressor loci associated with proximal chromosome 9p to q and distal chromosome 9q in bladder cancer and the initial screening for GAS1 and PTC mutations. Cancer Res. 1996 Nov 1;56(21):5039-43

Evidence for two tumor suppressor loci associated with chromosome 8p deletions are associated with invasive tumor growth in urinary bladder cancer. Am J Pathol. 1999 Sep;154(3):755-65

Atlas Genet Cytogenet Oncol Haematol. 2000; 4(4)

Muscheck M, Sükösd F, Pesti T, Kovacs G. High density deletion mapping of bladder cancer localizes the putative tumor suppressor gene between loci DBS504 and DBS264 at chromosome 8p23.3. Lab Invest. 2000 Jul;80(7):1089-93

This article should be referenced as such: