t(9;22)(q34;q11) in CML

Ali G Turhan

Translational Research - Cell Therapy, Laboratory, Institut Gustave Roussy, INSERM U. 362, 1 - 39, rue Camille Desmoulins, 94805 Villejuif, France (AGT)

Published in Atlas Database: October 2000
Online updated version : http://AtlasGeneticsOncology.org/Anomalies/t0922CML.html
DOI: 10.4267/2042/37674
This article is an update of: Huret JL. t(9;22)(q34;q11) in CML. Atlas Genet Cytogenet Oncol Haematol.1997;1(2):98-100.
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2000 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Note
Although the same hybrid genes issued from ABL and BCR are the hallmark of the t(9;22) translocation, this translocation may be seen in the following diseases: chronic myelogenous leukemia (CML), acute non lymphocytic leukemia (ANLL), and acute lymphocytic leukemia (ALL), and will therefore be described in the 3 different situations: t(9;22)(q34;q11) in CML, t(9;22)(q34;q11) in ALL, t(9;22)(q34;q11) in ANLL, t(9;22)(q34;q11) in CML is herein described.

9 t(9;22)(q34;q11) 22

9 t(9;22)(q34;q11) 22
9 t(9;22)(q34;q11) 22
9 t(9;22)(q34;q11) 22
9 t(9;22)(q34;q11) 22
9 t(9;22)(q34;q11) 22
9 t(9;22)(q34;q11) 22
9 t(9;22)(q34;q11) 22
9 t(9;22)(q34;q11) 22
9 t(9;22)(q34;q11) 22

9 t(9;22)(q34;q11) G- banding (left) - Courtesy Jean-Luc Lai and Alain Vanderhaegen (3 top) and Diane H. Norback, Eric B. Johnson, and Sara Morrison-Delap, UW Cytogenetic Services (2 bottom); R-banding (right) top: Editor; 2 others Courtesy Jean-Luc Lai and Alain Vanderhaegen); diagram and breakpoints (Editor).
Clinics and pathology

Disease
CML: all CML have a t(9;22), at least at the molecular level (see below); but not all t(9;22) are found in CML, as already noted.

Phenotype/cell stem origin
Evidence exists for the involvement of the most primitive and quiescent hematopoietic stem cell compartment (CD34+/CD38-, Thy1+): t(9;22) is found in myeloid progenitor and in B-lymphocytes progenitors, but, involvement of the T-cell lineage is extremely rare.

Epidemiology
Annual incidence: 10/10^6 (from 1/10^6 in childhood to 30/10^6 after 60 yrs); median age: 30-60 yrs; sex ratio: 1.2M/1F.

Clinics
Splenomegaly; chronic phase (lasts about 3 yrs) with maintained cell's normal activities, followed by accelerated phase(s) (blasts still < 15%), and blast crisis (BC-CML) with blast cells > 30%; blood data: WBC: 100 X 10^9/l and more during chronic phase, with basophilia; a few blasts; thrombocytosis may be present; low leucocyte alkaline phosphatases; typical acute leukaemia (AL) blood data at the time of myeloid or lymphoid -type blast crisis.

Cytology
Hyperplastic bone marrow; granulocytes proliferation, with maturation; followed by typical AL cytology (see t(9;22)(q34;q11)/ANLL, and t(9;22)(q34;q11)/ALL).

Treatment
aIFN therapy or allogeneic bone marrow transplantation (BMT), donor leukocytes infusions.

Prognosis
Median survival: 4 yrs with conventional therapy (hydroxyurea, busulfan), 6 yrs with aIFN therapy; allogeneic bone marrow transplantation may cure the patient; otherwise, the best treatment to date associates interferon a, hydroxyurea and cytarabine.

Cytogenetics

Cytogenetics morphological
The chromosomal anomaly persists during remission, in contrast with acute leukemia (AL) cases.

Cytogenetics molecular
Is a useful tool for diagnostic ascertainment in the case of a 'masked Philadelphia' chromosome, where chromosomes 9 and 22 all appear to be normal, but where cryptic insertion of 3' ABL within a chromosome 22 can be demonstrated.

Additional anomalies
1. May be present at diagnosis (in 10%, possibly with unfavourable significance), or may appear during course of the disease, they do not indicate the imminence of a blast crisis, although these additional anomalies also emerge frequently at the time of acute transformation;
2. These are: +der(22), +8, i(17q), +19, most often, but also: +21, -Y, -7, -17, +17; acute transformation can also be accompanied with t(3;21) (q26;q22) (1% of cases); near haploidy can occur; of note, although rare, is the occurrence of chromosome anomalies which are typical of a given BC phenotype (e.g. t(15;17) in a promyelocytic transformation, dic(9;12) in a CD10+ lymphoblastic BC ...); +8, +19, +21, and i(17q) occur more often in myeloid -rather than lymphoid- blast crises.

Variants
t(9;22;V) and apparent t(V;22) or t(9;V), where V is a variable chromosome, are found in 5-10% of cases; however, 9q34-3'ABL always joins 22q11-5'BCR in true CML; the third chromosome and breakpoint is, at times, not random. In a way, masked Philadelphia chromosomes (see above) are also variants.

Genes involved and proteins

ABL
Location
9q34
DNA/RNA
Alternate splicing (1a and 1b) in 5'.
Protein
Giving rise to 2 proteins of 145 kDa; contains SH (SRC homology) domains; N-term SH3 and SH2 - SH1
(tyrosine kinase) - DNA binding motif - actin binding domain C-term; widely expressed; localisation is mainly nuclear; inhibits cell growth.

BCR

Location
22q11

DNA/RNA
Various splicing.

Protein
Main form: 160 KDa; N-term Serine-Treonine kinase domain, SH2 binding, and C-term domain which functions as a GTPase activating protein for p21rac; widely expressed; cytoplasmic localisation; protein kinase; probable role in signal transduction.

Result of the chromosomal anomaly

Hybrid gene

Description
1. The crucial event lies on der(22), i.e. est 5' BCR/3' ABL hybrid gene is pathogenic, while ABL/BCR may or may not be expressed;
2. Breakpoint in ABL is variable over a region of 200 kb, often between the two alternative exons 1b and 1a, sometimes 5' of 1b, or 3' of 1a, but always 5' of exon 2;
3. Breakpoint in BCR is in a narrow region, therefore called M-bcr (for major breakpoint cluster region), a cluster of 5.8 kb, between exons 12 and 16, also called b1 to b5 of M-bcr; most breakpoints being either between b2 and b3, or between b3 and b4.

Transcript
8.5 kb mRNA, resulting in a 210 KDa chimeric protein.

Detection
RT-PCR for minimal residual disease detection.

Fusion protein

Description
P210 with the first 902 or 927 amino acids from BCR; BCR/ABL has a cytoplasmic localization, in contrast with ABL, mostly nuclear. It is now clearly established that BCR-ABL is the oncogene responsible for the occurrence of CML. The hybrid protein has an increased protein kinase activity compared to ABL: 3BP1 (binding protein) binds normal ABL on SH3 domain, which prevents SH1 activation; with BCR/ABL, the first (N-terminal) exon of BCR binds to SH2, hiding SH3 which, as a consequence, cannot be bound to 3BP1; thereof, SH1 is activated.

Oncogenesis
A- Major molecular pathways activated by BCR-ABL.
1. BCR/ABL activates RAS signaling through the GRB2 adaptor molecule which interacts specifically with the Y177 of BCR.
2. PI3-K (phosphatidyl inositol 3' kinase) pathway is also activated with secondary activation of the AKT/PKB pathway.
3. Integrity of transcription machinery induced by MYC is necessary for the transforming action of BCR-ABL.
4. More recently, activation of STAT (Signal transducers and activators of transcription) molecules has been described as a major molecular signaling event induced by BCR-ABL, with activation of essentially STAT5, 1, and 6.
5. Activation of the molecules of the focal adhesion complex (PAXILLIN, FAK) by BCR-ABL requires the role of the adaptor molecule CRK-L.
6. BCR-ABL activates negative regulatory molecules such as PTP1B and Abi-1 and their inactivation could be associated with progression into blast crisis.

B- Correlations between molecular pathways and leukemic phenotype observed in primary CML cells or in BCR-ABL-transduced cells are currently limited.
1. BCR-ABL has anti-apoptotic activity (Pf63K/Akt/STAT5).
2. BCR/ABL induces cell adhesive and migratory abnormalities in vitro in the presence of fibronecton or in transwell assays (Abnormal integrin signaling/FAK/CRK-L/Abnormal response to chemokine SDF-1).
3. BCR-ABL induces a dose-effect relationship in CML cells with increased BCR-ABL mRNA during progression into blast crisis, with induction of genetic instability.

To be noted

Note
1. Blast crisis is sometimes at the first onset of CML, and those cases may be undistinguishable from true ALL or ANLL with t(9;22) and P210 BCR/ABL hybrid;
2. JCMC (juvenile chronic myelogenous leukaemia) is not the juvenile form of chronic myelogenous leukaemia: there is no t(9;22) nor BCR/ABL hybrid in JCMC, and clinical features (including a worse prognosis) are not similar to those found in CML;
3. so called BCR/ABL negative CML should not be called so!
4. P53 is altered in 1/3 of BC-CML cases
5. Most recent developments: Evidence of telomere shortening in CML cells during progression into blast crisis.
References

Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem. 1994 Sep 16;269(37):22925-8

Ahmed M, Dusant-Fourt I, Bernard M, Mayeux P, Hawley RG, Bernardo T, Novault S, Bonnet ML, Gisselbrecht S, Vare B, Turhan AG. BCR-ABL and constitutively active erythropoietin receptor (cEpoR) activate distinct mechanisms for growth factor-independence and inhibition of apoptosis in Ba/F3 cell line. Oncogene. 1998 Jan 29;16(4):489-96

This article should be referenced as such: