PML (Promyelocytic leukemia)
Franck Viguié
Laboratoire de Cytogénétique - Service d'Hématologie Biologique, Hôpital Hôtel-Dieu, 75181 Paris Cedex 04, France (FV)

Published in Atlas Database: October 2000
Online updated version : http://AtlasGeneticsOncology.org/Genes/PMLID41.html
DOI: 10.4267/2042/37669
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2000 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity
Other names: MYL (myelocytic leukemia)
HGNC (Hugo): PML
Location: 15q24

DNA/RNA
Description
9 coding exons; total gene sequence: 35 kb

Transcription
3 main mRNAs 4.6, 3.0 and 2.1 kb; alternative splicing generates at least 16 isoforms of mRNAs, varying in the region coding for the C-terminal part of the protein.

Protein
Description
560 amino acids, 70 KDa (longest isoform); composed successively, from the N- to the C-terminus, by: 1- a proline-rich N-terminus 2- a so-called "tripartite motif", cysteine-histidine rich, composed of a RING finger structure and 2 B box domains, with putative DNA-binding function 3- a coiled-coil motif corresponding to a dimerization interface 4- a basic sequence with a nuclear localization domain, and 5- a serine-proline rich C-terminal region, of unknown function, variable in length (alternative splicing) and containing phosphorylation sites.

Expression
In a wide variety of tissues. In hematopoietic tissue, expression apparently restricted to myeloid precursors.

Localisation
Nuclear, as part of a multiproteic complex located into multiple subnuclear PML oncogenic domains (PODs).

Function
Unknown to date; putative transcription factor; in conjunction with other proteins included in the PODs, it would play a role as tumor suppressor and in apoptosis.

Homology
With (numerous) other RING finger/B box proteins.

Implicated in
t(15;17)(q22;q21) / acute promyelocytic leukemia (APL) --> PML-RARA

Disease
Typical APL (or M3 ANLL, FAB classification), approximately 98% of APL cases; abnormal promyelocytes with Auer rods and bundles (faggots); disruption of the PODs with a microspeckeled pattern; maturation response to all-trans retinoic acid (ATRA) therapy.

Prognosis
Immediate prognosis impaired by intravascular disseminated coagulopathy; long term prognosis is favorable with treatment combining ATRA plus chemotherapy.
Cytogenetics

Variant or complex t(15;17) translocation in 5% of cases, no known prognosis implication; secondary chromosomal abnormalities in 30 to 35% of APL at diagnosis; association with +8 in 17 to 28% of cases; other associations are rare but recurrent: del(7q), del(9q), ider(17)t(15;17), +21.

Hybrid/Mutated gene

The crucial fusion transcript is 5’PML-3’RARA, encoded by der(15) chromosome; the counterpart 5’RARA-3’PML encoded by der(17) is inconstant. Breakpoint in RARA gene is always located in intron between A and B domains.

Three breakpoint clusters in PML gene: bcr1 (70% of patients), bcr2 (10%) and bcr3 (20%), giving rise respectively to the long (L), intermediate (V) and short (S) length hybrid PML-RARα transcripts; V form would be linked to ATRA decreased sensitivity and S form to association with an excess of secondary chromosome changes.

Abnormal protein

106 Kda fusion protein; role in the leukemogenic process by probable interference with the signalling pathway leading to differentiation and maturation of myeloid precursors (mainly dysregulation of retinoid-inducible genes involved in myeloid differentiation).

References


This article should be referenced as such: