Malignant blood diseases

Jean-Loup Huret

Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers France (JLH)

Published in Atlas Database: June 2000

Online updated version : http://AtlasGeneticsOncology.org/Educ/Hempat_e.html
DOI: 10.4267/2042/37659

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2000 Atlas of Genetics and Cytogenetics in Oncology and Haematology

I- Introduction
II- Myeloproliferative syndromes
II-1. Chronic myeloid leukemia (CML)
II-2. Other myeloproliferative syndromes
III- Myelodysplastic syndromes (MDS)
IV- Acute non lymphoblastic leucemias (ANLL)
V- Secondary acute leukemias
VI- Acute lymphoblastic leukemias (ALL)
VII- Non Hodgkin’s lymphomas
VII-1. Chronic lymphoid leukemia (CLL)
VII-2. Non Hodgkin’s lymphomas (NHL)
VIII- Main chromosome anomalies in malignant blood diseases
IX- Domino game

I- Introduction

Malignant blood diseases may be classified:
• According to the clinical course:
 • chronic leukemias
 • acute leukemias
• According to the lineage:
 • lymphoid lineage: B or T
 • myeloid lineage:
 o myeloproliferative syndromes: quantitative anomalies
 o myelodysplastic syndromes: qualitative anomalies
 o acute myeloid leukemias (or acute non lymphoblastic leukemias)
• According to the primary site:
 • leukemia: originates in the bone marrow; flows into the peripheral blood
 • lymphoma: originates in the lymph nodes; invades bone marrow and blood

The cell Morphology (according to the FAB (French-American-British) classification of leukemias), the Immunophenotype and the Cytogenetic findings (MIC) allow a specific classification.

II- Myeloproliferative syndromes

Myeloproliferations: quantitatives anomalies of the myeloid lineage.

II-1. Chronic myeloid leukemia (CML)
• malignant monoclonal process involving a pluripotent hematopoietic progenitor (therefore, most of the lineages are implicated)
• splenomegaly, high leukocyte count, basophilia, immature cells in the peripheral blood, low leucocyte alkaline phosphatase, bone marrow expansion with increased neutrophil lineage
• prognosis: chronic phase, followed by blast crises, ending in an acute transformation; median survival used to be of 4 yrs before the new treatments
Chromosomal anomalies:
- t(9;22)(q34;q11)
- chromosome 22 appears shorter and was called Philadelphia chromosome (noted Ph)
- translocates (part of) an oncogene, ABL, sitting usually in 9q34, next to (part of) another oncogene, BCR (breakpoint cluster region), in 22q11 --> production of a hybrid gene 5' BCR-3'ABL
- the normal ABL is transcribed into a mRNA of 6 to 7 kbases, which produces a protein (tyrosine kinase) of 145 kDa
- the hybrid gene BCR-ABL, result of the translocation t(9;22), is transcribed into a mRNA of 8.5 kb, which produces a protein of 210 kDa: 1) an increased protein kinase activity 2) an increased half-life, as compared to normal ABL
- In a percentage of cases, there is a variant translocation, also implicating a third chromosome (e.g. t(1;9;22)); the implication of chromosome 9 or chromosome 22 may even be hidden (e.g. t(12;22); at times, finally, the karyotype seems normal ("Ph-CML")); however, the gene hybride BCR-ABL is always present (otherwise, it is NOT a CML!)
- therefore the translocation t(9;22) is the specific anomaly found in CML however, this anomaly is not pathognomonic, as it may also be found in ALL or in ANLL
- additional anomalies : most often found at the time of the blast crisis, they may also be present at diagnosis; mainly: +Ph, and/or +8, and/or (17q), and/or +19, and/or -7; clonal evolution

II- 2. Other myeloproliferative syndromes
- Polycythemia vera (PV) : red cell lineage mainly; median survival: 10 to 15 yrs
- Idiopathic myelofibrosis (or agnogenic myeloid metaplasia) : splenic metaplasia with progressive myelofibrosis ; survival is very variable (3 to 15 yrs)

Chromosomal anomalies:
- rare at diagnosis: del(20q), or +8, or +9, or del (13q), or partial trisomy for 1q
- frequent during acute transformation: anomalies are the one found in usual ANLL or in secondary leukemias (see below)
- Essential thrombocythemia (ET): megakaryocytic lineage mainly; survival = 10 yrs; chromosome anomalies are rare

III- Myelodysplastic syndromes (MDS)
Dysmyeloipoiesis: qualitative anomalies of the myeloid lineage

Classified according to the FAB:
- refractory anemia without excess of blasts (RA)
- refractory anemia with excess of blasts (RAEB)
- refractory anemia with ringed sideroblasts (RARS)
- chronic myelomonocytic leukemia (CMML)
- Aside : secondary myelodysplasias (see secondary acute leukemias)

Chromosomal anomalies:
- del(5q) (or -5, of identical signification)
- del(7q) (or -7, equivalent)
- +8
- various structural rearrangements of: 11q, 12p, or chromosome 3

IV- Acute non lymphoblastic leukemias (ANLL)
or acute myeloid leukemias (AML), the term myeloid being a bit confusing

- massive proliferation of myeloid precursors;
- the chromosome anomaly bears a prognostic value

Classified according to the FAB:
- M1 : myeloblastic without maturation
- M2 : myeloblastic with maturation
- M3 : promyelocytic
- M4 : myelomonocytic
- M5 : monocytic
- M6 : erythroleukemia
- M7 : megakaryoblastic

Chromosomal anomalies, main entities:
- t(8;21)(q22;q22) : mainly in M2-ANLL; genes ETO and AML1
- t(15;17)(q25;q21) : (quasi) pathognomonic of M3-ANLL; genes PML and RARA fair prognosis if DIC is prevented and with the new treatments (differentiation therapy) (and also as compared with other ANLL)
- inv(16)(p13q22): pathognomonic of M4-ANLL with eosinophilia; genes MYH11 and CBFB good prognosis: median survival = 5 yrs
- t(9;22)(q34;q11): rare in ANLL; most often in M1 or M2 ANLL; BCR-ABL as in CML in half cases (protein bcr-abl of 210 kDa, called P210), break at a different
locus in the other half cases with a m-RNA of 7 to 7.5 kb, and production of a bcr-abl protein of 190 kDa (named P190) with even a higher transforming ability than P210; very poor prognosis
• t(6;9)(p23;q34) : low specificity; often associated with basophilia; genes DEK and CAN; poor prognosis
• 3q21 rearrangements : associated with thrombocytosis; very poor prognosis
• 11q23 rearrangements (M4, M5, biphenotypic acute leukemias) of which is the t(9;11)(p22;q23)
• Other: del (20q) , +8, del (5q), del (7q), 12p rearrangements.

V- Secondary acute leukemias
• induced leukemias: treatment related (or "therapy related") leukemia (after chemo and/or radiotherapy for a prior cancer), or leukemia after professional exposure to carcinogenetic (genotoxic) chemicals or physical agents
• very poor prognosis

Chromosome anomalies : frequent, often complex:
• multiple monosomies (hypoploidy)
• del(5q) or -5
• del(7q) or -7
• rearrangements 6p, 12p, 17p, 11q23...

VI- Acute lymphoblastic leukemias (ALL)
• heavy proliferation of B or T lymphoid precursors,
• the immunophenotyping (CD, Ig) allows the recognition of the lineage involved in the malignant process, and the degree of maturation of the malignant cell
• the morphology differentiates ALL1 and 2 on one hand, and ALL3 with large Burkitt-type cells on the other hand
• --> MIC classification (Morphology, Immunophenotype, Cytogenetics) allows to define entities with given prognoses
• ALL often occur in childhood

Chromosome anomalies, main entities:
• t(4;11)(q21;q23) : immature (CD19+) B-cell; occurs often in childhood, especially very early (congenital leukemia, before 1 yr); very poor prognosis (median survival below 1 yr), the treatment being a bone marrow graft; genes MLL in 11q23 and AF4 in 4q21
• other 11q23 ; MLL and a shared clinical profile
• t(9;22)(q34;q11) : B-cell; very poor prognosis; at the molecular level: ABL and BCR : P210 in half cases, P190 in the other half, as is in ANLL with t(9;22)
• t(12;21)(p12;q22) : CD10+ B ALL in childhood; genes ETV6 and AML1
• t(8;14)(q24;q32) and variants t(2;8)(p12;q24) and t(8;22)(q24;q11); t(8;14) being the most frequent; quasi pathognomonic of L3-ALL and Burkitt lymphoma (mature B malignant cell); the prognosis was poor until recently, where new treatments are accompanied with better outcome; MYC in 8q24; immunoglobulin heavy-chains (IgH) in 14q32, or light-chains K (Ig K) in 2p12 and L (IgL) in 22q11; these translocations set the oncogene under the regulation of immunoglobulin transcription stimulating sequences (active in the B-lineage), leading to overexpression
• t(11;14)(p13;q11), t(8;14)(q24;q11) and t(10;14)(q24;q11) : T-cell leukemia; T-cell receptor (TCR D et A) belonging to the immunoglobulin superfamilly in 14q11; RBTN2 in 11p13, HOX11 in 10q24, and, obviously, MYC in 8q24; comparable to the above, with here an oncogene under the regulation of the T-cell receptor transcription stimulating sequences (active in the T-lineage), leading to overexpression
• del(6q), 9p rearrangements, 12p rearrangements, quasi-haploidy, hyperploidy (hyperploidy > 50 ; hyperploidy > 50 , they are of good prognosis), are not rare ALL

VII- Non hodgkin's lymphomas
• classified into numerous categories (see non Hodgkin lymphomas classification according to the cell and tissue morphology, and correlated with the prognosis (low to high grades)
• chronic lymphoid leukemia is considered as a leukemia by the haematologists and as a low grade lymphoma by the pathologists
• Chronic lymphoid leukemia (CLL): often a very slow process (10-15 yrs); at times very fast

Chromosome anomalies:
• +12, 14q32 rearrangements , del(6q) , 13q rearrangements, del(11q), +3, +18 , non identifiable markers; often as associated anomalies
• Non Hodgkin's lymphomas (NHL)

chromosome anomalies:
• t(14;18)(q32;q21) : typically, found in small cleaved B-cell lymphomas; BCL2 (B cell lymphoma 2) in 18q21, a gene of the BCL2/BAX family, implicated in the abrogation/induction of apoptosis ("programmed cell death"), immunoglobulin heavy-chain (IgH) in 14q32; BCL2 (protein of the inner membrane of the mitochondria), in case of a translocation t(14;18), is set under the regulation of immunoglobulin transcription stimulating sequences (active in the B-lineage), and overexpressed (as above)
• other 14q32 rearrangements: of which is the t(11;14)(q13;q32) often seen in mantle cell lymphomas
• 14q11 rearrangements: T-cell lymphomas; TCR A et D (T-cell receptor) in 14q11, and, at the breakpoint on the partner chromosome, an
oncogene, overexpressed when put under the regulation of the T-cell receptor transcription stimulating sequences (active in the T-lineage) various rearrangements, unrecognizable markers, multiple and complex anomalies are not rares in NHL

VIII- Main chromosome anomalies in malignant blood diseases

<table>
<thead>
<tr>
<th>Chromosome Abnormality</th>
<th>Disorder Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 chrom rearrangements</td>
<td>various</td>
</tr>
<tr>
<td>2 t(2;8)(p12;q24)</td>
<td>L3-ALL and Burkitt</td>
</tr>
<tr>
<td>4 t(4;11)(q21;q23)</td>
<td>ALL</td>
</tr>
<tr>
<td>5 del(5q) or -5</td>
<td>MDS, ANLL, Second Leuk.</td>
</tr>
<tr>
<td>6 del(6q)</td>
<td>ALL, CLL, NHL</td>
</tr>
<tr>
<td>7 del(7q) or -7</td>
<td>MDS, ANLL, Second Leuk.</td>
</tr>
<tr>
<td>8 t(2;8)</td>
<td>see chromosome 2</td>
</tr>
<tr>
<td>t(8;14)(q24;q32)</td>
<td>L3-ALL and Burkitt</td>
</tr>
<tr>
<td>(8;14)(q24;q11)</td>
<td>T-ALL</td>
</tr>
<tr>
<td>t(8;21)(q22;q22)</td>
<td>M2-ANLL</td>
</tr>
<tr>
<td>+8</td>
<td>various, myeloid</td>
</tr>
<tr>
<td>9 t(9;22)(q34;q11)</td>
<td>CML, ANLL, ALL</td>
</tr>
<tr>
<td>del(9p)</td>
<td>ALL</td>
</tr>
<tr>
<td>+9</td>
<td>various</td>
</tr>
<tr>
<td>11 t(4;11)</td>
<td>see chromosome 4</td>
</tr>
<tr>
<td>t(11;14)(p13;q11)</td>
<td>T-ALL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chromosome Abnormality</th>
<th>Disorder Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(11;14)(q13;q32)</td>
<td>NHL</td>
</tr>
<tr>
<td>del(11q)</td>
<td>MDS, ANLL, CLL</td>
</tr>
<tr>
<td>12 +12</td>
<td>CLL, NHL</td>
</tr>
<tr>
<td>t(12;21)(p12;q22)</td>
<td>ALL</td>
</tr>
<tr>
<td>13 del(13q)</td>
<td>various</td>
</tr>
<tr>
<td>14 t(8;14)</td>
<td>see chromosome 8</td>
</tr>
<tr>
<td>(11;14)</td>
<td>see chromosome 11</td>
</tr>
<tr>
<td>t(14;18)(q32;q21)</td>
<td>NHL</td>
</tr>
<tr>
<td>inv(14)(q11q32)</td>
<td>T-lymphocyte</td>
</tr>
<tr>
<td>15 t(15;17)(q22;q12)</td>
<td>M3-ANLL</td>
</tr>
<tr>
<td>16 16q22 rearrangement</td>
<td>M4-ANLL</td>
</tr>
<tr>
<td>17 t(15;17)</td>
<td>see chromosome 15</td>
</tr>
<tr>
<td>i(17q)</td>
<td>CML</td>
</tr>
<tr>
<td>18 t(14;18)</td>
<td>see chromosome 14</td>
</tr>
<tr>
<td>20 del(20q)</td>
<td>myeloid</td>
</tr>
<tr>
<td>21 t(8;21)</td>
<td>see chromosome 8</td>
</tr>
<tr>
<td>t(12;21)</td>
<td>see chromosome 12</td>
</tr>
<tr>
<td>22 t(8;22)</td>
<td>see chromosome 8</td>
</tr>
<tr>
<td>t(9;22)</td>
<td>see chromosome 9</td>
</tr>
<tr>
<td>Other hypoploidy</td>
<td>Second Leuk., ALL</td>
</tr>
<tr>
<td>hyperploidy</td>
<td>Second Leuk., ALL, NHL</td>
</tr>
<tr>
<td>marker</td>
<td>Second Leuk., CLL, NHL</td>
</tr>
</tbody>
</table>
IX- Domino game

This article should be referenced as such: