IGH (Immunoglobulin Heavy)

Marie-Paule Lefranc
IMGT, LIGM, IGH, UPR CNRS 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France (MPL)

Published in Atlas Database: July 2000
Online updated version: http://AtlasGeneticsOncology.org/Genes/IgHID40.html
DOI: 10.4267/2042/37636
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2000 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity
HGNC (Hugo): IGH@
Location: 14q32.33

For complete Figure, see the international ImMunoGeneTics information system; Copyright 1995-2003 IMGT.

Note
The human IGH locus is located on the chromosome 14 at band 14q32.33, at the telomeric extremity of the long arm; the orientation of the locus has been determined by the analysis of translocations, involving the IGH locus, in leukemia and lymphoma.

DNA/RNA

Description
The human IGH locus at 14q32.33 spans 1250 kilobases (kb). It consists of 123 to 129 IGHV genes, depending from the haplotypes, 27 IGHD segments belonging to 7 subgroups, 9 IGHJ segments, and 11 IGHC genes.
Eighty-two to 88 IGHV genes belong to 7 subgroups, whereas 41 pseudogenes, which are too divergent to be assigned to subgroups, have been assigned to 4 clans. Seven non-mapped IGHV genes have been described as insertion/deletion polymorphism but have not yet been precisely located.
The most 5' IGHV genes occupy a position very close to the chromosome 14q telomere whereas the IGHC genes are in a more centromeric position.
The potential genomic IGH repertoire is more limited since it comprises 38-46 functional IGHV genes belonging to 6 or 7 subgroups depending from the haplotypes 23 IGHD, 6 IGHJ, and 9 IGHC genes.
Thirty-five IGH genes have been found outside the main locus in other chromosomal localizations. These genes designated as orphans cannot contribute to the synthesis of the immunoglobulin chains, even if they have an Open Reading Frame (ORF). 9 IGHV orphans and 10 IGHD orphans have been described on chromosome 15 (15q11.2), and 16 IGHV orphans on chromosome 16 (16p11.2). In addition, one IGHC processed gene, IGHEP2 is localised on chromosome 9 (9p24.2-p24.1)
This is so far the only processed Ig gene described. The total number of human IGH genes per haploid genome is 170 to 176 (206 to 212 genes, if the orphans and the processed gene are included) of which 77 to 84 genes are functional.
Protein Description

Proteins encoded by the IGH locus are the immunoglobulin heavy chains. They result from the recombination (or rearrangement), at the DNA level, of three genes: IGHV, IGHD and IGHJ, with deletion of the intermediary DNA to create a rearranged IGHV-D-J gene.

The rearranged IGHV-D-J gene is transcribed with the IGHM gene and translated into an immunoglobulin mu chain. The gamma, alpha or epsilon heavy chains, result from a new recombination (or switch), again at the DNA level, between sequences designated as "Switch" and localized upstream of the IGHM and of
each of the functional IGH, IGHA and IGHE constant genes.

This recombination, accompanied by the deletion of the intermediary DNA, allows the IGHV-D-J initially transcribed with the IGHM, to be now transcribed with a IGHG, IGHA or IGHE gene, and translated into a gamma, alpha or epsilon chain.

Translation of the variable germline genes involved in the IGHV-D-J rearrangements are available at IMGT Repertoire Composed to the germline genes, the rearranged variable genes will acquire somatic mutations during the B cell differentiation in the lymph nodes, which will considerably increase their diversity. These somatic mutations can be analysed using IMGT/V-QUEST tool.

**Mutations**

**Note**

Mutations which correspond to allelic polymorphisms of the functional germline IGHV, IGHD, IGHJ and IGHC genes are described in the IMGT database.

**Implicated in**

**Translocations which frequently result from errors of the recombinase enzyme complexe (RAG1, RAG2, etc.), responsible of the Immunoglobulin and T cell receptor V-J and V-D-J rearrangements, or from errors of the switch enzyme. IGHV, IGHD or IGHJ recombination signals or isolated heptamer (first case) or switch sequences (second case) are observed at the breakpoints.**

![c-Immunoglobulin genes IgH at 14q32.33, in normal cells: PAC 998024 - Courtesy Mariano Rocchi.](image)

t(3;14)(q27;q32)
t(4;14)(p16;q32)
t(5;14)(q31;q32)
t(8;14)(p11;q32)
t(8;14)(q24;q32)
t(10;14)(q24;q32)
t(11;14)(q13;q32)
t(14;18)(q32;q21)
t(14;19)(q32;q13.1)

**References**


Flanagan JG, Rabbits TH. The sequence of a human immunoglobulin epsilon heavy chain constant region gene, and evidence for three non-allelic genes. EMBO J. 1982;1(5):655-60


White MB, Shen AL, Word CJ, Tucker PW, Blattner FR. Human immunoglobulin D: genomic sequence of the delta heavy chain. Science. 1985 May 10;228(4700):733-7


Huck S, Lefranc G, Lefranc MP. A human immunoglobulin IGHG3 allele (Gmb0,b1,c3,c5,u) with an IGHG4 converted region and three hinge exons. Immunogenetics. 1989;30(4):250-7

Bensmana M, Chuchana P, Lefranc G, Lefranc MP. Sequence of the CH1 and hinge-CH2 exons of the human immunoglobulin IGHA2 A2m(2) allele: comparison with the nonallelic and allelic IGHA genes. Cytogenet Cell Genet. 1991;56(2):128


This article should be referenced as such: