12p rearrangements in ALL

Nyla A Heerema

The Ohio State University, Division of Clinical Pathology, Department of Pathology, 167 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, USA (NAH)

Published in Atlas Database: February 2000
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/12pALLID1074.html
DOI: 10.4267/2042/37586
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2000 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

![del(12)(p12) G-banding - Courtesy Diane H. Norback, Eric B. Johnson, and Sara Morrison-Delap, UW Cytogenetic Services.]

Clinics and pathology

Disease
Acute lymphocytic leukemia (ALL).

Phenotype/cell stem origin
Lack of specificity for particular immunophenotype, although more stem origin frequent in B-lineage cases.

Epidemiology
Approximately 10-15% of pediatric ALL cases, and 5% of adult ALL.

Prognosis
Recent data indicate no difference in overall outcome between childhood ALL cases with versus without 12p abnormalities, although there was an improved outcome for pseudodiploid patients with versus without a cytogenetic 12p abnormality; although a dic(9;12) has been reported to be associated with an excellent outcome, in a recent study, there was no difference in outcome between those patients with a dic(9;12) versus patients lacking an abnormal 12p.

Cytogenetics

Cytogenetics morphological
Various aberrations result in an abnormal 12p; these include morphological balanced translocations with 12p breakpoints, del(12p), add(12p), monosomy 12, der(12)t(V;12)(V;p), and dic(V;12)(V;p); an abnormal 12p usually occurs as part of a more complex karyotype, and occurs as the sole aberration in less than 20% of cases with an abnormal 12p; in greater than 10% of cases both 12p homologues are abnormal; few cases with an abnormal 12p have more than 50 chromosomes.

Additional anomalies
del(6q), del(13q) or monosomy 13, acquired +21; few recurring anomalies.

Genes involved and proteins

Note
Approximately half of patients with an abnormal 12p have a rearranged TEL gene.
TEL (or ETV6)

Location
12p13

Protein
TEL proteins belong to the ETS family transcription factors; important in the vitelline angiogenesis and in the bone marrow hematopoiesis.

References

This article should be referenced as such: