Diaphyseal medullary stenosis with malignant fibrous histiocytoma (DMS-MFH)

John A Martignetti
Mount Sinai School of Medicine, Departments of Human Genetics and Pediatrics, 1425 Madison Ave, Box 1498, New York, NY 10029, USA (JAM)

Published in Atlas Database: December 1999
DOI: 10.4267/2042/37573

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 1999 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Alias: Bone dysplasia with medullary fibrosarcoma; Bone dysplasia with malignant fibrous histiocytoma; Hereditary bone dysplasia with malignant change

Note: DMS-MFH is an hereditary bone dysplasia / cancer syndrome.

Inheritance: Autosomal dominant; rare hereditary cancer syndrome with only four families identified worldwide; etiology unknown.

Clinics

Note
Radiologic evidence of bone dysplasia not evident in childhood; X-ray findings become apparent during adolescence.

Phenotype and clinics
Main features include:
- Bone dysplasia (100%)
- Cortical growth abnormalities: diaphyseal medullary stenosis with overlying endosteal cortical thickening and scalloping, metaphyseal striations, scattered sclerotic areas symmetrically affecting the long bones; bilateral mandibular radiolucent and sclerotic lesions
- Bone infarctions
- Pathologic fractures: subsequent poor healing or non-union
- Progressive wasting or bowing of the lower extremities
- Bone pain
- Pre-senile cataracts (25%)

Photograph A: Lateral X-ray view of the left tibia and fibula of an 18 year old male with DMS-MFH and MFH. Note the extensive diaphyseal cortical thickening, areas of resultant medullary stenosis, endosteal irregularities, overall permeative pattern in the medullary cavity, and metaphyseal striations.
Diaphyseal medullary stenosis with malignant fibrous histiocytoma (DMS-MFH) Martignetti JA

- Bone malignant fibrous histiocytoma (MFH) (35%)
 Diagnosis: X-ray skeletal findings are unique; however, there may be some radiologic overlap with other diaphyseal dysplasias including Camurati-Engelman and Kenny-Caffey diseases and radiation osteitis; no hematologic or urinary markers of disease have been identified; 201Thallium chloride radionucleotide scans may offer discrimination between areas of increased metabolic bone activity found in DMS-MFH patients and malignant change.

Neoplastic risk

Thirteen cases of osseous MFH; thirty-five per cent of DMS-MFH patients develop MFH; the age distribution has been from the second to fifth decades; no sex predilection; in its sporadic form, MFH represents approximately 6% of all bone cancers and is the most frequently occurring adult soft-tissue sarcoma.

Treatment

No known treatment for the dysplasia; the tumors are highly aggressive - treated with surgical ablation and the same chemotherapeutic regimens as osteosarcoma; it is believed that preoperative chemotherapy improves surgical outcome.

Evolution

The disease becomes radiologically apparent only in adolescence; however, retrospectively, clinical signs and symptoms may be evident in childhood; these include unexplained bone pain and pathologic fractures; in some, crippling pain and weakness of the lower extremities ensues following the sixth decade; malignancy occurs most frequently between the second to fifth decades and is particularly aggressive; only two long-term survivors, greater than five years, are known; pre-senile cataracts have been noted as early as in the third decade.

Other findings

Note

Collagen fibrils from the endosteal surface of bones appear frayed and unravel (unpublished results); chemical crosslink analysis of bone biopsy samples reveal altered hydroxylysylpyridinolin (HP) / lysylpyridinoline (LP) ratios (unpublished results).

Genes involved and proteins

Note

The gene has been mapped by linkage analysis to a 3 cM region on chromosome 9p21-22; all families used in the study generated positive LOD scores in this region and all affecteds had similar phenotypic findings consistent with the syndrome being genetically homogeneous; a number of genes in the region,
including p15 and p16, have been excluded as the DMS-MFH gene by DNA sequencing analysis; under the hypothesis that hereditary and sporadic MFH tumors are genetically identical, the DMS-MFH tumor-suppressor gene region has been further narrowed to 1.5 cM using loss of heterozygosity analysis; the continued search for the common minimally deleted region in MFH tumors should provide the most powerful method for gene identification.

References

This article should be referenced as such: