Nijmegen breakage syndrome

Nancy Uhrhammer, Jacques-Olivier Bay, Richard A Gatti

Centre Jean-Perrin, BP 392, 63000 Clermont-Ferrand, France (NU, JOB, RAG)

Published in Atlas Database: October 1999
Online updated version: http://AtlasGeneticsOncology.org/Kpronens/NijmegenID10020.html
DOI: 10.4267/2042/37571


This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 1999 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Alias: Ataxia-telangiectasia, variant VI; Seemanova syndrome II; Microcephaly with normal intelligence, immunodeficiency, lymphoreticular malignancies; Immunodeficiency, microcephaly, chromosomal instability

Note: Belongs to the group of inherited chromosomal instability syndromes:
- Bloom's syndrome,
- Fanconi’s disease,
- Ataxia telangiectasia (AT); see also, in Deep Insight section: Ataxia-Telangiectasia and variants.

Inheritance: Autosomal recessive disease; since the recognition of the Nijmegen breakage syndrome (NBS) in 1981, about 50 patients are included in the NBS Registry in Nijmegen; the disease appears to have originated in central Europe, in the Slavic population, and to have spread through a founder effect.

Clinics

Note
The condition is characterised by growth and mental retardation, craniofacial dysmorphism, ovarian failure, immunodeficiency, chromosome instability, predisposition to lymphoid malignancies, and radiosensitivity

Phenotype and clinics
- Growth and mental development: 30% of children have low birth weight and short stature, and 75% a head circumference at birth below the 3rd percentile; all patients develop a severe microcephaly during the first months of life; mental development is normal in 35% of the patients, moderately retarded in the others, though the mental retardation appears to be progressive; cerebellar ataxia is absent; alphafoetoprotein levels are normal, in contrast to AT patients.
- Craniofacial dysmorphism: progressive and severe microcephaly, "bird-like" face with prominent midface, long nose and receding mandible.
- Immunodeficiency: severe combined deficiency with agammaglobulinemia, IgA, IgG2 and IgG4 deficiencies, decreased CD3+ and CD4+ lymphocytes, and decreased CD4+/CD8+ ratio; these disturbances are responsible of frequent respiratory, gastrointestinal and urinary infections.

Neoplastic risk
High frequency and early development of lymphomas, more often involving B-cells, in contrast with those found in AT; other forms of cancer may also be at higher risk.

Cytogenetics

Inborn conditions
- Lymphocyte cultures often show low mitotic index.
- Structural chromosome aberrations are observed in 10-30% of metaphases; most of the rearrangements occur in or between chromosomes 7 and 14, at bands 7p13, 7q35, 14q11, and 14q32, as in AT; these bands contain immunoglobulin and T-cell receptor genes; the most frequent rearrangement is the inv(7)(p13q35).

Other findings

Note
Radiosensitivity: increased sensitivity of both lymphocytes and fibroblasts to ionising radiations and radiomimetics, radio-resistant DNA synthesis.
Genes involved and proteins

NBS1

Location
8q21

DNA/RNA
Description: 16 exons.

Protein
Function: The product of NBS1, nibrin (p95), should have a role in the control of double-strand DNA breaks involved, for example, in VDJ joining in immunoglobulin and T-cell receptor genes recombination process, in meiotic recombination, and in radio-induced DNA lesions; this suggests that nibrin and the product of ATM could act in a common pathway of detection or repair of double-strand breaks; nibrin/p95 is found associated with Rad50 and Mre11 at sites of DNA double-strand breaks.

Mutations
Germinal: All Nijmegen patients show truncating mutations.

References


This article should be referenced as such: