Solid Tumour Section
Mini Review
Prognosis
Considered to have a poorer prognosis than the transitional cell carcinoma.

Cytogenetics

Cytogenetics Morphological
Highly complex karyotypes, yet poorly known. Allelic losses are frequent; the most frequent regions involved in loss of heterozygocity (LOH) are 3p, 8p, 9p, 9q, 17p; the karyotype is more complex in advanced grades/stages, as in transitional cell carcinoma.

Chromosome 7: trisomy 7 seems to be more frequent than in transitional cell carcinoma, and is found more often in advanced stages; unknown significance as +7 may also be found in normal tissues.

Chromosome 9: monosomy 9 is an early event and might even occur at dysplastic stages; allelic losses are frequent, mainly in 9p (65%), more often than for transitional cell carcinoma; LOH are found in particular in the locus where CDKN2/P16 sits; homozygous deletion of P16 is frequent (50%) and may also be found in squamous metaplasias from cancerous patients (but not in squamous metaplasias from non cancerous patients); trisomy 9, on the other hand, would be frequent in advance diseases.

Chromosome 17: P53 is often implicated, especially in high grades/stages; the profile of mutations of P53 is different from what is found in transitional cell carcinoma.

Cytogenetics Molecular
Comparative genomic hybridization (CGH) and multi-FISH (M-FISH) are complementary tools to determine respectively unbalanced segments and structural rearrangements in these complex karyotypes.

Genes involved and proteins

Note
Multistep process; largely unknown.

References

Wheeless LL, Reeder JE, Han R, O’Connell MJ, Frank IN, Cockett AT, Hopman AH. Bladder irrigation specimens assayed by fluorescence in situ hybridization to interphase nuclei. Cytometry. 1994 Dec 1;17(4):319-26

This article should be referenced as such: