t(11;14)(q13;q32) G-banding (left) - Courtesy Diane H. Norback, Eric B. Johnson, Sara Morrison-Delap Cytogenetics at the Waisman Center and R-banding (right) - Editor.

Note: t(11;14) is mainly found in mantle cell lymphoma, but also in B-prolymphocytic leukaemia, in plasma cell leukaemia, in splenic lymphoma with villous lymphocytes, in chronic lymphocytic leukaemia, and in multiple myeloma, herein briefly described; all these diseases involve a B-lineage lymphocyte.

Phenotype / cell stem origin
B-cell non Hodgkin lymphoma of the low to intermediate grade.

Epidemiology
Annual incidence 5/10^6; median age: 65 yrs.

Clinics
Advanced disease.

Prognosis
Median survival: 3 to 4 yrs.

Disease
Mantle cell lymphoma.
Disease
B-prolymphocytic leukaemia.

Phenotype / cell stem origin
Chronic lymphoproliferative disorder affecting mature B-cells.

Epidemiology
Rare disease; median age 70 yrs.

Clinics
Patients often present with advanced stage disease.

Prognosis
Median survival: 3 yrs.

Disease
Plasma cell leukaemia.

Phenotype / cell stem origin
Proliferation involving plasma cells.

Epidemiology
Rare disorder.

Prognosis
Median survival is less than a yr.

Disease
Splenic lymphoma with villous lymphocytes.

Phenotype / cell stem origin
Chronic B-cell lymphoproliferation.

Epidemiology
Rare disorder; median age: 70 yrs.

Clinics
Relatively benign clinical course.

Prognosis
80% 5-yr survival.

Disease
Chronic lymphocytic leukaemia.

Phenotype / cell stem origin
Chronic B-cell lymphoproliferation.

Epidemiology
Annual incidence 30/10^6; median age: 60-80 yrs.

Clinics
Often a slow evolutive disease.

Prognosis
Highly variable according to the staging: from staging A: survival not reduced compared to age matched population, to staging C: median survival of 2 yrs.

Disease
Multiple myeloma.

Phenotype / cell stem origin
Malignant plasma cell proliferation (terminally differentiated B-cell).

Epidemiology
Annual incidence: 30/10^6; median age: 60 yrs.

Prognosis
Median survival: 3 yrs.

Cytogenetics

Cytogenetics, morphological
t(11;14) has earlier been thought to be the hallmark of the mantle cell lymphoma; actually, the frequency of t(11;14) is: 50-70% in mantle cell lymphoma, 10-20% in B-prolymphocytic leukaemia, in plasma cell leukaemia, and in splenic lymphoma with villous lymphocytes, and 2-5% in chronic lymphocytic leukaemia, and in multiple myeloma.

Cytogenetics, molecular
In particular interphase cytogenetics, are relevant in these diseases with an usually low mitotic index.

Additional anomalies
Sole anomaly in only 10% of cases; part of a complex karyotype in 2/3 of cases; numerous recurrent anomalies found conjointly (which is the primary?), particularly: +3, +7, del(9p), +18, +mar, found in about 10% of cases each; other: del(1p), del(6q), del(7q), -8, +12, del(13q), del(17p).

Variants
Three way complex t(11;14;Var) exist and showed that the crucial event lies on der(14).

Genes involved and Proteins

BCL1
Location: 11q13

DNA / RNA
5 exons.

Protein
Encodes the cyclin D1; role in the cell cycle control: G1 progression and G1/S transition.

IgH
Location: 14q32

Results of the chromosomal anomaly

Hybrid gene

Description
5' BCL1 translocated on chromosome 14 near JH (junctions genes of IgH) and C in 3'; the breakpoint in BCL1 is in MTC (major translocation cluster), centromeric to the gene (in 5'), in 80% of cases, or dispersed in mTC1, 2, or 3 in 5' of the gene or in the 3' untranslated region of exon 5.
Fusion protein

Description
No fusion protein, but promoter exchange; the immunoglobulin gene enhancer stimulates the expression of BCL1.

Oncogenesis
Overexpression of BCL1 accelerates passage through the G1 phase.

References

This article should be referenced as such: