De la validité du modèle de transition d'échelles de Kröner-Eshelby dans le cas d'inclusions à morphologies multiples

E. Lacoste, S. Freour, F. Jacquemin

Institut de Recherche en Génie Civil et Mécanique (UMR CNRS 6183), Université de Nantes – Centrale Nantes, 37 Boulevard de l’Université, BP 406, 44 602 Saint-Nazaire cedex, France

Résumé :
Cette étude vise à examiner la validité du modèle autocohérent de Kröner-Eshelby dans le cas où plusieurs morphologies d’inclusions coexistent au sein d’un même volume élémentaire représentatif. Une étude des deux formulations utilisables et de leurs limites conduit à proposer une formulation mixte qui satisfait les principes de moyennes de Hill. Les résultats de cette approche originale sont alors décrits dans le cas d’un chargement thermo-mécanique.

Abstract :
The present work aims to investigate the validity of Eshelby-Kröner self-consistent model in the case when several morphologies do coexist within the same representative elementary volume. A study of the two resulting formulations and their limits leads to suggest a mixed formulation, which satisfies both Hill’s averages principles. The results of this original approach are also described in the case of a thermo-mechanical load.

Mots-clés : matériaux composites, modèle autocohérent, inclusions multiples, transition d’échelles.

1 Introduction
Le récent développement des matériaux composites a ouvert de nouvelles perspectives pour la conception de pièces mécaniques, en raison de leur important rapport performances/poids et de leur forte résistance à la corrosion et à la fatigue. Cependant, en contrepartie des ces avantages, leur hétérogénéité intrinsèque induit un comportement mécanique complexe en service, ainsi que d’importantes contraintes résiduelles de fabrication. Les modèles de transition d’échelles répondent à la nécessité de prédire la répartition des contraintes entre les constituants. Parmi ceux-ci, les modèles basés sur l’inclusion d’Eshelby, tels que celui de Mori-Tanaka ou de Kröner-Eshelby [1], permettent de calculer les propriétés effectives du matériau ou la répartition des contraintes entre les constituants, sans formuler d’hypothèse a priori sur les états mécaniques locaux, et en tenant compte de la morphologie des inclusions constitutives du matériau.

La présente étude est focalisée sur un matériau composite composé de bandes renforçantes rectangulaires (60x8x0,15mm) arrangées aléatoirement dans le plan (figure 1), formant ainsi un pli isotope plan. Ces bandes sont composées de fibres T300 et de résine époxy arrangerées en un pli unidirectionnel. Le modèle de Kröner-Eshelby est utilisé afin de réaliser une transition d’échelles en deux étapes (figure 2). Les propriétés effectives d’une bande renforçante sont d’abord estimées à partir de celles des fibres et de la matrice. Une deuxième transition d’échelles est alors effectuée afin de déterminer le comportement effectif du matériau à partir des propriétés de la bande renforçante et de la matrice.

FIG. 1: Représentation schématique de la microstructure du matériau
2 Présentation du modèle multimorphe

2.1 Formalisme de Hill et modèle de Kröner-Eshelby

Le modèle de Kröner-Eshelby est basé sur une représentation du matériau à deux échelles : l’échelle locale, celle des constituants (Volume de Base ou VB), indiquée par l’exposant i, tandis que l’échelle macroscopique (Milieu Homogène Équivalent ou MHE) sera indiquée par l’exposant I. Ces comportements sont exprimés par la loi thermo-élastique (1), où la rigidité est représentée par le tenseur \mathbf{L} d’ordre 4, et le Coefficient d’Expansion Thermique (CET) par le tenseur α d’ordre 2. L’incrément de température est indiqué par ΔT, tandis que σ et ε représentent respectivement la contrainte et la déformation.

$$\sigma^k = \mathbf{L}^k : (\varepsilon^k - \alpha^k \Delta T) \quad \text{où} \ k = i, I$$

Les relations de transition d’échelle s’écrit des principes de moyennes de Hill [3] qui assument l’équivalence entre les moyennes d’ensemble (i.e. volumiques) et les intégrales volumiques. Ces relations s’écrit via les équations ci-dessous, où les crochets $<...>$ représentent l’opération de moyenne volumique arithmétique, en projection dans le repère macroscopique RI.

$$\varepsilon^I = \langle \varepsilon^i \rangle$$
$$\sigma^I = \langle \sigma^i \rangle$$

Dans un travail fondateur, Eshelby [4] a étudié le comportement d’une inclusion noyée dans un milieu homogène chargé à l’infini. Il a démontré que, pour une inclusion de forme ellipsokdrale, les contraintes et déformations du VB satisfaisaient la relation suivante :

$$\sigma^i - \sigma^I = -\mathbf{L}^I : \mathbf{R}^I : (\varepsilon^i - \varepsilon^I)$$

où \mathbf{R}^I est le tenseur de réaction, qui représente l’interaction entre le VB (d’axes principaux $\{2a_1, 2a_2, 2a_3\}$) et le milieu qui l’entoure. Ce tenseur est calculé à partir du tenseur de rigidité \mathbf{L}^I projeté dans le repère local \mathbf{R}^i de l’inclusion. La rotation entre les repères macroscopiques et locaux est effectuée via la convention introduite par Roe [5]. Si le VB ne présente pas une morphologie unique dans le repère RI, ou si la rigidité varie selon l’orientation du repère RI (i.e., si le matériau n’est pas isotrope), le tenseur \mathbf{R}^I n’est plus macroscopique mais dépend du VB considéré. En conséquence, l’exposant I sem remplacé par II.

2.2 Formulation en contraintes et déformations

En utilisant les lois de comportement ainsi que la relation de transition d’échelle donnée plus haut, on peut exprimer les contraintes et déformations locales comme :

$$\varepsilon^I = \langle \varepsilon^i \rangle = \int_{\mathbf{R}^I} \left(\mathbf{L}^I + \mathbf{L}^I : \mathbf{R}^I \right)^{-1} : \left[\int_{\mathbf{R}^I} \left(\mathbf{L}^I + \mathbf{L}^I : \mathbf{R}^I \right)^{-1} : \varepsilon^i + \int_{\mathbf{R}^I} \left(\mathbf{L}^I : \alpha^I - \mathbf{L}^I : \alpha^I \right) : \Delta T \right]$$

Dans le cas de chargements purement élastiques, ces relations peuvent s’écrit en fonction des tenseurs de localisation des déformations et de concentration des contraintes, respectivement :

$$\varepsilon^I = \left[\int_{\mathbf{R}^I} \left(\mathbf{L}^I + \mathbf{L}^I : \mathbf{R}^I \right)^{-1} : \left(\mathbf{L}^I + \mathbf{L}^I : \mathbf{R}^I \right) \right] : \varepsilon^I = \mathbf{A}^I : \varepsilon^I$$

$$\sigma^I = \mathbf{B}^I : \sigma^I$$

Les principes de moyennes de Hill impliquent les relations suivantes sur \mathbf{A}^I et \mathbf{B}^I :
\[\langle A^i \rangle = \langle B^i \rangle = I \] (9)

En formulant le problème en contraintes via (3) et (6), on aboutit aux propriétés :

\[L^i = \langle L^i : A^i \rangle \] (10)

\[\alpha^i = \langle L^i : (L^i + L^i : R^i)^{-1} : L^i : R^i \rangle^{-1} : \langle L^i : (L^i + L^i : R^i)^{-1} : L^i : R^i : \alpha^i \rangle \] (11)

En revanche, la formulation en déformations (équations 2 et 5) aboutit à :

\[L^i = L^i : \langle A^i \rangle = \langle L^{-1} : B^i \rangle^{-1} \] (12)

\[\alpha^i = L^{-1} : \langle (L^i + L^i : R^i)^{-1} : (L^i + L^i : R^i)^{-1} : L^i : \alpha^i \rangle \] (13)

Plusieurs auteurs ont montré que, si le tenseur de réaction \(R^i \) était unique (suivant les conditions énoncées plus haut), ces deux formulations aboutissaient à un unique ensemble de propriétés effectives. Le modèle est donc utilisé pour modéliser le comportement des métaux et alliages constitués de grains équiaxiaux [6], ou des plis composites unidirectionnels à matrice organique [7] ou métallique [8]. Des modèles similaires ont été appliqués à des matériaux industriels contenant des inclusions de morphologie ou d'orientation géométrique variable [9]. La défaillance des modèles basé sur l'inclusion d'Eshelby pour ce type de microstructure a été relevée, notamment par Benveniste [2], mais aucune étude systématique de ce défaut n'est présente dans la littérature. C'est pourquoi les résultats donnés par chaque formulation seront comparés dans la section suivante, dans le cas du matériau étudié.

3 Propriétés homogénéisées du matériau

L'homogénéisation de la bande renforçante correspond au cas classique d'un pli composite unidirectionnel. Les propriétés effectives de la bande renforçante, pour un taux volumique de fibres de 63%, sont données dans le tableau 1. Les propriétés de la résine époxy et des fibres T300 y sont également indiquées.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_x) [GPa]</td>
<td>(E_y, E_z) [GPa]</td>
<td>(v_{xy}, v_{xz})</td>
<td>(G_{xy}, G_{xz}) [GPa]</td>
</tr>
<tr>
<td>146.8</td>
<td>10.2</td>
<td>0.274</td>
<td>7.0</td>
</tr>
<tr>
<td>230</td>
<td>15</td>
<td>0.20</td>
<td>15</td>
</tr>
<tr>
<td>4.5</td>
<td>4.5</td>
<td>0.4</td>
<td>1.61</td>
</tr>
</tbody>
</table>

En revanche, la deuxième transition d'échelles est non triviale car elle implique des inclusions à morphologies multiples, et doit donc être traitée avec le modèle multimorphe décrit plus haut. Comme attendu, les équations (10) et (12) donnent deux estimations distinctes de la rigidité effective (tableau 2).

<table>
<thead>
<tr>
<th>Modules élastiques effectifs du matériau</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_1, E_2) [GPa]</td>
</tr>
<tr>
<td>He</td>
</tr>
<tr>
<td>He</td>
</tr>
<tr>
<td>Hmixte</td>
</tr>
</tbody>
</table>

Les modules mécaniques obtenus par les deux méthodes vérifient les bornes de Voigt et Reuss. Les modules élastiques obtenus par la formulation en contraintes (notée He) sont proches de la borne de Voigt ; alors que l’autre approche (notée Hmixte) aboutit à des modules proches de la borne de Reuss. Une homogénéisation mixte (notée Hmixte), inspirée du modèle de Voook-Witt [12] [13] est proposée. Le comportement dans le plan est modélisé en utilisant la formulation en contraintes, alors que la formulation en déformations est utilisée pour le comportement hors plan. Le tenseur de rigidité effectif satisfait alors la forme donnée dans l’équation (14) :
Le calcul des moyennes des tenseurs A^i et B^i, sur les constituants du matériau et toutes les orientations, donne une bonne estimation de la pertinence de chaque formulation (tableau 3). Pour les deux formulations « pures » (Hé et Hm), les composantes dans le plan $(11, 12$ et $66)$ affichent de fortes erreurs par rapport au principe des moyennes de Hill ; pour elles, la formulation en contraintes (Hé) donne les erreurs les plus faibles. Au contraire, pour les composantes hors plan, la formulation en déformations (Hm) est la plus fiable. La formulation mixte combine les avantages de ces deux méthodes et aboutit à des erreurs inférieures à 3% pour chaque terme. Ces erreurs sont nulles pour une morphologie de type platelet ($a_1 = a_3$), quelle que soit la formulation utilisée. Cependant, elles augmentent rapidement lorsque l’étirement et l’épaisseur augmentent, le modèle est donc valide seulement pour une gamme de morphologies limitée.

TAB. 3: Moyennes des tenseurs de localisation et de concentration pour les trois formulations

<table>
<thead>
<tr>
<th></th>
<th>$A_{11} = A_{22}$</th>
<th>A_{33}</th>
<th>$A_{44} = A_{55}$</th>
<th>A_{66}</th>
<th>$A_{12} = A_{21}$</th>
<th>$A_{13} = A_{31}$</th>
<th>$A_{31} = A_{32}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hé</td>
<td>1,001</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hm</td>
<td>1,031</td>
<td>1</td>
<td>0,443</td>
<td>0,512</td>
<td>0,007</td>
<td>0</td>
<td>-0,033</td>
</tr>
<tr>
<td>Hmixte</td>
<td>1,029</td>
<td>1,000</td>
<td>0,500</td>
<td>0,511</td>
<td>0,007</td>
<td>0</td>
<td>0,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$B_{11} = B_{22}$</th>
<th>B_{33}</th>
<th>$B_{44} = B_{55}$</th>
<th>B_{66}</th>
<th>$B_{12} = B_{21}$</th>
<th>$B_{13} = B_{23}$</th>
<th>$B_{31} = B_{32}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hé</td>
<td>3,465</td>
<td>1</td>
<td>0,5</td>
<td>1,431</td>
<td>0,604</td>
<td>-1,178</td>
<td>0</td>
</tr>
<tr>
<td>Hm</td>
<td>1</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hmixte</td>
<td>1,001</td>
<td>1,001</td>
<td>0,497</td>
<td>0,500</td>
<td>0,001</td>
<td>-0,009</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Valeur attendue

| | 1 | 1 | $1/2$ | $1/2$ | 0 | 0 | 0 |

Comme plus haut, les coefficients d’expansion thermique ont été calculés à l’aide des trois formulations présentées précédemment (équations 11 et 13). Les résultats sont présentés dans le tableau 4. Pour la formulation mixte, les CET effectifs satisfont la symétrie suivante :

$$\alpha^i = \begin{bmatrix}
H^\sigma q^i_{11} & 0 & 0 \\
0 & H^\sigma q^i_{11} & 0 \\
0 & 0 & H^\sigma q^i_{23}
\end{bmatrix}$$

Les rigidités obtenues pour chaque formulation sont utilisées pour calculer les CET correspondants. Comme pour la rigidité, on observe un fort écart dans les résultats selon la formulation utilisée. Cet écart est également présent si on utilise la même rigidité pour les trois formulations. Afin d’évaluer la pertinence de ces résultats, les erreurs relatives X^{thermo} et Y^{thermo} sont définies comme suit :

$$X^{thermo} = \left(\Delta\sigma_{thermo,i} \right) : \left(\alpha^i \Delta T \right)^{-1}$$
$$Y^{thermo} = \left(\Delta\sigma_{thermo,i} \right) : \left(L^i : \alpha^i \Delta T \right)^{-1}$$

avec

$$\Delta\sigma_{thermo,i} = \alpha^i - B^i : \sigma^i$$
$$\Delta\sigma_{thermo,i} = \varepsilon^i - A^i : \varepsilon^i$$

Ces erreurs sont également présentées dans le tableau 4, pour chaque formulation. On observe ainsi que la formulation en contraintes vérifie le principe de moyenne de Hill sur les contraintes, mais aboutit à une importante erreur sur les déformations thermiques, spécialement dans la direction hors plan. Respectivement, la formulation en déformations vérifie le principe de moyenne de Hill en déformations, mais sous-estime les contraintes thermiques de plus de 200%. Comme observé pour le comportement élastique, la formulation mixte donne le meilleur compromis entre ces deux aspects, et aboutit à une erreur inférieure à 3% pour chaque terme. De plus, ces erreurs sont nulles pour une morphologie de type platelet, et augmentent quand la morphologie est étirée et épaisse.
TAB. 4: CET du matériau effectif pour les trois formulations, et erreurs associées

<table>
<thead>
<tr>
<th></th>
<th>CET [10^6/K]</th>
<th>Erreur sur ε</th>
<th>Erreur sur σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a₁, a₂, a₃</td>
<td>X₁ thermo</td>
<td>X₂ thermo</td>
</tr>
<tr>
<td>Hₑ</td>
<td>24.8</td>
<td>0</td>
<td>-2.088</td>
</tr>
<tr>
<td>Hₜ</td>
<td>3.52</td>
<td>0.062</td>
<td>0</td>
</tr>
<tr>
<td>Hmixte</td>
<td>3.52</td>
<td>0.031</td>
<td>0.004</td>
</tr>
<tr>
<td>Valeur attendue</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>

4 Application à des chargements thermo-mécaniques

4.1 Réponse du matériau à un chargement mécanique

Afin de caractériser le comportement mécanique multi-échelles du matériau, on considère une traction macroscopique de 100 MPa dans la direction 1. La relation (6) permet de calculer les contraintes locales dans les constituants, en projection dans le repère local Ri. On observe ainsi (figure 3) que les contraintes de traction - compression (σₓₓ, σᵧᵧ, σᵦᵦ) évoluent avec l’angle d’orientation Θ comme des cosinusoides π-périodiques, alors que les contraintes de cisaillement σₓᵧ évoluent comme des sinusoides.

FIG. 3: Contraintes locales dans le matériau sous chargement macroscopique de 100 MPa

Les contraintes locales dans le matériau sont fortement hétérogènes ; ainsi, les bandes renforçantes subissent des contraintes jusqu’à 260 MPa dans la direction x, alors que la matrice reprend moins de 10 MPa. Cette concentration des contraintes est due à la déorientation des bandes par rapport au chargement mécanique. Elle est amplifiée à l’intérieur des bandes renforçantes, où les fibres reprennent plus de 400 MPa alors que la matrice intra-renforts reprend moins de 20MPa. Dans la direction normale au plan, on constate des contraintes faibles et relativement homogènes dans les bandes renforçantes et la matrice extra-renforts, les déformations étant en revanche très hétérogènes. A l’intérieur des bandes renforçantes, on observe l’apparition de contraintes complémentaires faibles (-2 à 2,5 MPa) dans les fibres et la matrice intra-renforts.

4.2 Réponse du matériau à un chargement thermique

Une étude similaire à la précédente a été menée dans le cas d’un chargement thermique de -100°C. Ce type de chargement est typique du refroidissement subit par le matériau durant le processus de cuisson, qui génère des contraintes résiduelles sévères [14]. Contrairement au chargement mécanique, l’expansion thermique
respecte l’isotropie plane. Les contraintes et déformations de cisaillement sont donc nulles et les états mécaniques locaux indépendants de l’orientation Θ de la bande renforçante. On notera que ce résultat est valable pour tout chargement respectant l’isotropie plane. Les contraintes locales dans le matériau sont résumées dans le tableau 5 ci-dessous. A l’échelle intermédiaire, on observe un écart marqué entre les contraintes σxx dans les deux constituants : la matrice est mise en traction alors que les bandes renforçantes sont comprimées. Cette compression implique par ailleurs un risque de micro-flambement en surface du matériau. Ce schéma se répète à l’échelle microscopique, où les fibres sont compressées et la matrice soumise à une forte traction (58 MPa). Dans la direction z (normale au plan), on remarque l’émergence de contraintes complémentaires dans les fibres et la matrice intra-renforts, en raison de l’hétérogénéité de comportement thermo-mécanique de ces constituants.

TAB. 5: États de contrainte dans le matériau et ses constituants sous chargement thermique de -100°C

<table>
<thead>
<tr>
<th>Echelle</th>
<th>Milieu</th>
<th>Contraintes (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σxx</td>
<td>σyy</td>
</tr>
<tr>
<td>Macroscopique</td>
<td>Matériau effectif</td>
<td>0,0</td>
</tr>
<tr>
<td>Intermédiaire</td>
<td>Matrice extra-renforts</td>
<td>42,6</td>
</tr>
<tr>
<td></td>
<td>Bandes renforçantes</td>
<td>-48,1</td>
</tr>
<tr>
<td>Microscopique</td>
<td>Matrice intra-renforts</td>
<td>57,79</td>
</tr>
<tr>
<td></td>
<td>Fibres</td>
<td>-109,9</td>
</tr>
</tbody>
</table>

5 Discussion et perspectives

Une procédure de transition d’échelles en deux étapes, basée sur l’inclusion d’Eshelby, a été proposée pour décrire le comportement d’un matériau composite renforcé par des inclusions rectangulaires non-orientées. Les limites du modèle de Kröner-Eshelby pour ce type de microstructures ont été discutées en comparant les résultats donnés par les deux formulations résultantes. Une formulation mixte, respectant les relations de moyennes de Hill a été proposée. Cette méthode est applicable à d’autres matériaux, tels que les nanocomposites. Dans ce cadre, le modèle multimorphe serait une alternative intéressante au modèle de Krenchel [15] pour l’estimation des propriétés élastiques de ce type de matériaux. La procédure de transition d’échelles a ensuite été utilisée afin de calculer les états mécaniques locaux sous chargement mécanique et thermique. Ce travail montre que le modèle de Kröner-Eshelby multimorphe est un outil intéressant pour la modélisation multi-échelles de matériaux composites. Cependant, pour des microstructures complexes ne respectant pas l’unicité des morphologies au sein du MHE, une attention particulière doit être portée à l’unicité des propriétés effectives et à la vérification des relations de moyennes de Hill.

Références