CFD-based functional imaging for arteries: in vitro validation

B. TAYLLAMINa, R. MORENOb, F. NICOUd, M. CHAUc, H. ROUSSEAUb

a I3M CNRS - UMR 5149, 34095 Montpellier
b INSERM U 858 I2MR, CHU de Rangueil, Toulouse
c ASA, Montpellier

Résumé:
De l'imagerie fonctionnelle pour les vaisseaux est développée à partir de données médicales morphologiques (IRM 4D) et hémodynamiques (IRM par contraste de phase dans les plans d'entrée-sortie). Les données fonctionnelles pertinentes (champ de vitesse, frottement pariétal, gradient de pression, ...) sont alors calculées en simulant l'écoulement compatible avec les données médicales. On présente les résultats obtenus dans la phase de validation in vitro de cette technique sur un fantôme de crosse aortique.

Abstract:
Morphological (MRI) and hemodynamic (phase contrast MRI) medical data are used to perform functional imaging for arteries. The relevant data (velocity field, wall shear stress, pressure gradient, ...) are the output of the computation of the blood flow that is coherent with the input medical data. Results obtained when this technique is applied to a phantom of the aortic cross are presented in this paper.

Mots clés: Computational Fluid Dynamics, Cardiovascular biomechanics, Functional imaging

1 Introduction
Risk factors for cardiovascular disease (hypertension and high cholesterol) and their role have been identified, but cannot explain the observed localised occurrence and the progression of the disease (stenosis, aneurysm rupture, aortic dissection). Currently, available techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Ultrasound (US) do not allow accurate determination of the complex velocity distribution and biomechanical load on the arterial wall. Nevertheless there no doubt that medical imaging is an essential tool for the understanding of these pathological processes. Cardiovascular disease is clearly multi-factorial and it has been shown that deviations of the normal velocity field (e.g.: changes in wall shear stress) play a key role [1]. Despite many hemodynamic studies carried out with models of arterial bifurcations, especially the carotid artery bifurcation, the precise role played by wall shear stress (WSS) in the development and progression of atherosclerosis remains unclear. Still, it is certain that the mechanical load induced by the fluid on atherosclerotic plaques and their surrounding tissues is of the utmost importance for predicting future rupture (culprit plaques) and preventing ischemic events [2]. In the same way, the risk of rupture of an aortic abdominal aneurysm (AAA) depends more on biomechanical factors than simply on the aneurysm diameter. Although clinical decisions are based only on the latter today, wall tension is a significant predictor factor of pending rupture [3]. Computational Fluid Dynamics (CFD) techniques can provide extremely detailed analysis of the flow field and wall stress (shear and tensile) to very high accuracy. New advances in simulation techniques could make a significant contribution to a better quantitative knowledge of the biomechanical condition of the arteries and lead to a new understanding via deepened insights into these conditions. Advanced simulations could potentially be used for predicting plaque and aneurysm rupture, improving endovascular prosthesis design, as well as for guiding treatment decisions by predicting the outcome of interventional gesture (i.e. stent-coil technique). However, applying computational fluid dynamics (CFD) to actual pathological regions of the arterial tree is very challenging and has never been done so far with sufficient accuracy and time efficiency to be useful in the clinical practice. Several reasons can be put forward to explain this:

\begin{itemize}
\item the blood rheology is complex and, once coupled to flow motion equations, leads to a set of strongly coupled, highly non-linear set of partial differential equations which is far less understood than the classical Navier-Stokes system,
\item the fluid-structure problem is very stiff because the blood to arterial tissue density ratio is close to unity; from an algorithmic point of view, this means that the fluid and structure equation must be advanced simultaneously in time, leading to potentially costly methods,
\item the arterial wall rheology is essentially unknown and hardly measurable because pathology and patient specific; uniform linear elasticity is most often assumed as a first step, but no reliable data are available to
\end{itemize}
produce the second step,

– the external load to which the artery is submitted to is unknown,
– pointwise hemodynamic data with sufficient time and space resolution are hardly measurable under in vivo conditions, although they are necessary to feed the CFD simulations with realistic boundary conditions,
– accurate geometrical data about the arterial region require advanced medical imaging systems that are only available in radiology department of hospitals whose first objective is to host and treat patients and where neither the computing science nor the computational mechanics are part of the common expertise and background.

To overcome most of the above mentioned difficulties, we propose a new methodology where advanced medical imaging techniques and CFD methods are inter-connected in order to obtain biomechanical data related to the blood flow under realistic and physiological conditions. This leads to a numerical chain whose input come from an entirely non-invasive 4D MRI protocol that provides time varying geometry and flow rates and output is a functional imaging description of the arterial tree region of interest.

The paper is organized as follows: the methodology is presented in section 2 where the generation of the 4D meshes is briefly discussed. The results obtained for a phantom of a human aortic cross are then presented in section 3.

2 Methodology

The methodology developed relies heavily on advanced medical imaging techniques and dedicated numerical tools for solving the fluid flow equations. It aims at producing functional imaging for arteries by determining the blood flow which is coherent with the geometry deformation and the inlet/outlet hemodynamic conditions that can be obtained from MRI protocols. This is sketched in figure 1 where the square boxes correspond to the tools involved and the generated data are inside ellipses. Some details about the different tools involved are given in the following subsections.

![Diagram](image)

FIG. 1 – General methodology to produce functional imaging in arteries.

2.1 Geometry acquisition

A routine contrast-enhanced MR angiography (CE-MRA) was performed using a three-dimensional (3D) slab covering the whole phantom geometry, with an injection of 18 ml of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) and with a spatial resolution close to 1x1x1 mm (isotropic voxel). The CE-MRA sequence used phase reordering and data were acquired using parallel imaging so that this acquisition collects the image contrast very fast and become ‘phase locked’. This leads to a spatially well resolved description of the vessel geometry at one single phase over the cycle. Classical segmentation techniques like the level-set [4] can then be applied to this image volume in order to generate the corresponding wall surface. We then make use of a commercial CFD mesh generator (e.g. [5]) in order to reconstruct the full arterial morphology through a triangular surface mesh discretization. Finally, a three-dimensional volume grid based on tetrahedra is generated. The latter is classically used to perform rigid model unsteady fluid simulations and/or coupled fluid-structure computations. Instead, in the present study it serves as a native geometry/mesh which is deformed in such a way to reproduce the wall motions that can be observed from dynamic geometry acquisition. In this work we used a retrospective triggered True FISP (fast imaging with steady-state precession) imaging, because it has a
number of advantages over other techniques (full coverage of the cardiac cycle, intrinsic high signal-to-noise ratio, high signal of blood, short scan time and intrinsic flow compensation). This MRI sequence provides the 3D geometry corresponding to several instants (typically 15-25) over the cycle. The price to pay is a longer acquisition time and a coarser spatial resolution (approx. 2x2x2 mm). It is however judged sufficient to gain information about the deformation of the native geometry.

2.2 Moving mesh

Wall movements are imposed to the native mesh consistently with the outcome of the dynamic acquisition [6]. For each phase of the dynamic acquisition, the transformation process consists in estimating the deformation between the native geometry and the geometry corresponding to this particular phase. Therefore, the whole transformation is completed when the deformations to all the target images of a cardiac cycle are computed. At each step, the deformation field results from an optimization problem whose solution is the best compromise between effective and regular transformation. If one seeks for the transformation $T(x)$ which transforms the native image $I_{\text{native}}(x)$ into a target image $I_{\text{target}}(x)$, the effectiveness of T is measured as

$$F_1 = \int_{\Omega} [I_{\text{native}}(x) - I_{\text{target}}(T(x))]^2 d\Omega$$

where the integral is taken over the volume Ω of the native image and I_i stands for the pixel values of image i. On the other hand, the regularity of T is assessed as

$$F_2 = \int_{\Omega} [|J| - 1] d\Omega + \int_{\Omega} [|J|^{-1} - 1] d\Omega$$

where $|J|$ stands for the Jacobian of T and F_2 is designed in order to drive $|J|$ toward unity. The optimization process consists in finding T by minimizing a linear combination of F_1 and F_2:

$$F = F_1 + \alpha F_2,$$

where α is a free parameter which should be chosen of order unity. The derivative of F is computed either with symbolic differentiation or by finite differences and a simple steepest descent algorithm is used to find the minimizer of Eq. 1.

2.3 Hemodynamic data

In principle, only the knowledge of the inlet unsteady flux is required to performed the computations and find out the flow which is consistent with the measured geometrical variations. To this respect, 2D Phase-Contrast (2D-PC) sequences are performed with the MRI system. These sequences are done in planes orthogonal to the vessel axis at the inlets/outlets of the region of interest. In the case of the phantom of the aorta cross, supplementary sagittal 3D-PC acquisition with three velocity encoding directions, covering the whole phantom geometry, were performed to compare quantitatively the velocity results from the CFD to the direct measurement. For 2D-PC and 3D-PC, the in-plane spatial resolution and slice thickness were close to 2 mm and 5 mm respectively.

2.4 Numerical method

The flow simulations were performed using the finite volume (FV) method, as implemented in the AVBP code [7, 8] (CERFACS, European Center for Research and Advanced Training in Scientific Computation, Toulouse, France). The FV method used in the code solves the full compressible Navier-Stokes equations that govern the flow. This code makes use of an efficient explicit Arbitrary Lagrangian Eulerian (ALE) formulation which allows to impose the motion of tetraedral mesh within cardiac cycles. It has been specially designed to reproduce unsteady flows with a minimum amount of artificial viscosity; is relies on advanced numerical schemes [9] and characteristic based boundary conditions [10].

The characteristic Mach number in blood flows is obviously close to zero and for this study it would be more efficient to solve the incompressible Navier-Stokes equations. However, a compressible 3D solver [7, 8] has been used because certain efficient numerical techniques (e.g. artificial compressibility) to solve the incompressible Navier-Stokes equations lead to an hyperbolic problem. As such they share a common mathematical behavior with the compressible equations, allowing the use of characteristic based boundary conditions. This is particularly useful when developing integral boundary conditions [11] which require only knowledge of the integral of the inlet flux, as opposed to the pointwise flux which is hardly available in biomedical applications. The characteristic framework is also well suited to defined essentially non-reflecting boundary conditions and thus minimizing the amount of numerical reflexions and the need of artificial dissipation [12, 13].
3 Numerical results

The methodology presented in section 2 relies only on non-intrusive medical imaging techniques and thus can be applied to actual patient to obtain patient specific functional imaging, as illustrated in previous studies [14, 15] for the aortic cross. The method is now applied to an in vitro test case with the aim to produce both qualitative and quantitative validation. The configuration corresponds to the phantom of a human aortic cross whose compliance is typical of actual values. The blood is replaced by a non physiologic Newtonian fluid with high shear viscosity and density relevant to blood, viz. \(\mu \approx 4 \times 10^{-3} \text{ Pa.s} \) and \(\rho \approx 1000 \text{ kg/m}^3 \) respectively. Note that the problem is thus simplified since the difficulties related to the complex blood rheology do not need to be accounted for in what follows. A discontinuous pump adapted from a Ventricular Assist Device (Thoratec) is used to feed the phantom with pulsatile fluid flow. Hemodynamic conditions (time-dependent functions) from the 2D-PC sequences were synchronized with the wall motion and subsequently used as boundary conditions for the ascending aorta (inlet) and the supra-aortic vessels (exit). An essentially non-reflecting boundary condition [13] is prescribed at the outlet of the descending aorta. The computational domain is depicted in figure 2 where the position of the cross section displayed in figure 4 is also shown. Note that the extra pipe section at the inlet of the computational domain is part of the in vitro model. This one was designed is such a way to promote the swirl motion of the fluid flow at the inlet of the physiological part of the phantom in order to reproduce the hemodynamic in vivo conditions more closely. The simulations began from an initially quiescent flow state and continued for a number of full cardiac cycles in order to allow the development of a fully periodic flow, representative of a regular heartbeat. It was found that the main features of the vascular flow field became periodic within four cycles.

The time evolution of the flowrate is shown in figure 3 for the inlet and outlet sections of the aorta, for both the phase contrast MRI and the computation. As expected, the agreement is better for the inlet where the velocity is imposed as a boundary condition. The difference at the inlet comes from the fact that relaxed boundary conditions are used in order to avoid numerical instabilities [13] by letting most of the high frequency, numerical oscillations leave the computational domain through the boundaries. The price to pay is that physical quantities are not imposed exactly at boundaries; note however that the difference observed in figure 3 (left) are most probably smaller than the experimental uncertainty related to the PC-MRI based flowrate measurements. Considering the outlet section corresponding to the descending aorta, see figure 3 (right), the main features of the experimental signal are well recovered in the numerical results. This supports the idea that the Windkessel effect, related to the storage/release of blood during the cardiac cycle and due to the geometry deformation, is well predicted in this complex geometry.

Finally figures 4 and 5 offer a comparison of the velocity vectors as obtained from MRI and CFD in the cross section depicted by the bold line in figure 2 and in a sagital plane respectively. The comparison is made at two instants over the cardiac cycle which are representative of the systole phase (instant \(t_1 \)) and the diastole phase (instant \(t_2 \)) respectively (see figure 3 (left) for the location of \(t_1 \) and \(t_2 \)). The general agreement is also good, although the spatial resolution is not as good with the phase contrast MRI. The results indicate that the blood flow in the aorta arch is characterized by an intense swirl motion, especially at systole. The strength and the position of this motion are similar in both the experimental and the numerical approaches (see figure 4). Also, the reverse flow which is observed in the experiment at diastole (see figure 5 (right)) is well recovered in the computation. The general organization of the systolic flow is also comparable in both approaches (see figure 5 (left)), with the jet zone at the outer part of the arch where the speed is the highest and the trend to recirculate below the supra-aortic vessels.
Fig. 3 – Time evolution of the flowrate at the inlet (left plot) and outlet (right plot) of the aorta. The solid line corresponds to the simulation; the dashed lines denote the phase contrast MRI measurements.

Fig. 4 – Velocity vectors obtained from CFD (white background) and MRI (gray background) at systole (left) and diastole (right) phase. Plane intersects the upper arch.

Fig. 5 – Velocity vectors obtained from CFD (white background) and MRI (gray background) at systole (left) and diastole (right) phase. Sagital plane.

4 Conclusion

A numerical chain is proposed in order to generate functional imaging relevant to arteries. It relies on several imaging techniques (contrast enhanced magnetic angiography, dynamic MRI, 2D phase contrast MRI) in order
to gain data about the deformation of the 3D arterial domain of interest as well as associated hemodynamic conditions at inlet/outlet boundaries. An optimization procedure is then used together with classical segmentation and meshing techniques in order to produce a time evolving 3D mesh which reproduces the observed motions. Once synchronized with the wall motions, the hemodynamic data are used as boundary conditions of a CFD tool for the computation of the (unique) unsteady blood flow which is consistent with the acquired data. This methodology was applied to the phantom of a human aorta cross for which additional PC MRI sequences have also been performed in order to provide quantitative data about the 3D blood flow. The comparisons made are reasonable, given the fact that the experimental protocol used is directly transposable to in vivo cases and that associated uncertainties are quiet large. This demonstrates the potential of the proposed methodology for the generation of functional imaging unavailable from classical imaging systems.

This work has been done in the framework of the OCFIA research program funded by the Agence Nationale de la Recherche (ANR-07-CIS7-006-02). The authors are grateful to CINES (Centre Informatique National de l’enseignement supérieur) for giving access to super computing facilities.

Références