Déconvolution en sismique réflexion marine par modèle Bernoulli-gaussien associé à une source à phase non-minimale

Mohammed Boujida, Jean-Marc Boucher

Télécom Bretagne, Département Signal et Communications
BP 832, 29285 BREST Cedex
tel: 98001357, fax: 98001012, e-mail: JM.Boucher@enst-bretagne.fr

Résumé

On traite le problème de la déconvolution en sismique réflexion marine à haute résolution. On estime l'ondelette source par un modèle ARMA à phase non-minimale selon la méthode du spectre équivalent qui utilise les cumulants d'ordre trois; puis, on déconvole par un algorithme itératif de détection-estimation basé sur un modèle Bernoulli-Gaussien représentant la réflexivité du sous-sol. On applique ces méthodes à des traces sismiques provenant de diverses sources sous-marines.

I - Introduction :

La sismique réflexion marine très haute résolution utilise des sources variées (Sondeur de sédiment, "Sparkier", canons à eau) pour analyser la structure géologique du fond marin. Ces sources produisent un signal à phase non-minimale, qui se réfléchit dans le milieu stratifié qui constitue le sous-sol. Le problème de la déconvolution consiste à retrouver la séquence de réflexivité, ainsi que le signal de source à partir de l'observation du signal réfléchi.

Le problème n'est pas neuf et plusieurs approches principales classiques ont déjà été proposées, mais elles sont mal adaptées à ce cas d'application: la déconvolution prédictive fait l'hypothèse que le signal de source est à phase minimale ce qui permet de calculer le filtre inverse, la déconvolution homomorphe[1,2] suppose que l'ondelette source et la séquence de réflexivité sont complètement séparées dans le domaine cepstral; elle est sensible au bruit; la méthode multi-impulsionnelle[2] associée à un traitement homomorphe estime mal les amplitudes des impulsions de la séquence de réflexivité.

L'objet de l'étude est donc de proposer une déconvolution en décomposant le problème en plusieurs étapes: identification tout d'abord du modèle ARMA de l'ondelette source par une méthode qui recherche la solution à phase non minimale présentant le même cumulant d'ordre trois que la trace sismique[4]; puis recherche des temps d'arrivée des impulsions par une méthode de détection-estimation de leurs amplitudes par filtrage de Kalman [6,7]. La déconvolution nécessite alors l'estimation des paramètres de ce modèle, c'est à dire la probabilité λ d'apparition d'une impulsion liée à la réflexion (y compris multiples, fantôme,...,etc.), la variance des amplitudes de ces impulsions, la variance du bruit additif de mesure.

L'algorithme complet est appliqué à des traces synthétiques, puis à des traces sismiques en réflexion marine à haute résolution.

II - Modélisation du problème :

En traitement sismique, on suppose que la structure géologique se comporte comme un système linéaire (chaque des couches sera considérée comme un milieu homogène, isotrope et non dispersif). La trace enregistrée à la surface sera ainsi constituée de la convolution du signal émis par la source avec la réponse impulsionnelle de la structure géologique étudiée.

Si on appelle h(k) l'ondelette source émise, alors la trace sismique enregistrée au niveau du géophone, dans les conditions idéales de propagation décrites ci-dessus, pourra s'écrire sous la forme:

\[x(k) = \{ r(k) \ast \{ h(k) \ast \{ n(k) \} \} \] (1)

où r(k) est la fonction de réflexivité de la structure géologique, qui sera ici supposée être une séquence Bernoulli-Gaussienne (B-G) et n(k) un bruit blanc gaussien de variance \(\sigma^2 \).

\[r(k) = t(k).w(k) \] (2)

avec : t(k) séquence de Bernoulli caractérisant la présence de réflexions à l'instant k avec une probabilité \(\lambda \).

\[p(t(k) = 1) = \lambda, \quad p(t(k) = 0) = 1 - \lambda, \]

et w(k) est un bruit gaussien blanc centré de variance \(\sigma^2 \).

III - Identification du signal de source :

On considère que l'ondelette source possède une transformée en z à p pôles et q zéros. Puisque la séquence de réflexivité est un bruit blanc gaussien, il s'ensuit que la trace sismique \(x(k) \) suit un modèle ARMA d'ordre (p,q):

\[x(k) = -\sum_{i=1}^{p} a_i x(k-i) + \sum_{j=0}^{q} b_j r(k-j) \] (3)

En général, pour les sources sismiques employées dans le milieu sous-marin, l'ondelette source est à phase non-minimale, et les statistiques d'ordre deux, conduisant à un modèle à phase minimale, ne suffisent plus, d'où la nécessité de recourir aux statistiques d'ordre plus élevé (S.O.S).
Différentes solutions ont été proposées pour trouver ce modèle à partir des S.O.S. Dans cette application, on dispose de relativement peu de données, ce qui entraîne une assez mauvaise estimation des S.O.S : la méthode de Giannakis-Mendel [5] ne fournit pas de bons résultats.

On sait par contre trouver le modèle ARMA à phase non-minimale en utilisant les équations de Yule-Walker modifiées pour identifier la partie AR, puis en filtrant par le modèle inverse et en cherchant le modèle MA du signal filtré : tous les modèles MA vont se distinguer par la position des zéros de part et d’autre du cercle unité, mais auront tous la même densité spectrale. On examine alors systématiquement toutes les configurations de zéros [4]. Il y a Q configurations avec : \(Q = \text{nombre de zéros réels} \times \text{nombre de zéros complexes} \). Pour chacune d’entre elles, on calcule les coefficients bi de la partie MA, et on cherche celle qui minimise l’erreur quadratique entre les cumulants \(C_3(m) \) d’ordre trois calculés directement sur le signal filtré et ceux provenant des divers modèles MA.

\[
C_3(m) = E \left[\left(x(k) - E[x(k)] \right) \left(x(k+m) - E[x(k+m)] \right) \right]^2
\]

On montre que les \(C_3(m) \) peuvent s’exprimer à l’aide des \(b_i \) par:

\[
C_3(m) = \gamma_3 \sum_{i=0}^{m} b(i) b^*(i+m)
\]

(4)

où \(\gamma_3 \) est le cumulant d’ordre trois de la séquence \(r(k) \).

Le vrai modèle est celui qui minimise la quantité:

\[
J = \frac{1}{N} \sum_{m=0}^{m=q} (C_3(m) - C_3(m))^2
\]

Dans le cas d’une séquence d’entrée présente une densité de probabilité proche de la symétrie, on passe à l’ordre quatre avec le même critère d’identification.

IV - Identification de la séquence de réflexivité

Il s’agit d’un problème de détection-estimation pour lequel plusieurs solutions ont déjà été proposées [3]. Elles utilisent le critère du maximum a posteriori et il a été montré que le problème pouvait se traiter en deux étapes séparées, l’une de détection des temps d’arrivée, l’autre de détermination des amplitudes. Cette procédure a été rendu globalement réussie par l’utilisation conjointe de techniques de filtrage optimal du type Kalman, de détection par maximisation de vraisemblance et d’une représentation du système par des modèles d’état dégénérés.

Pour une réponse impulsionelle \(h(k) \) de durée finie \(N+1 \), le modèle (1) peut se mettre sous forme de régression [6]. Soit:

\[
h_k = [h(0), h(N), h(N-1), \ldots, h(0), 0, \ldots, 0]
\]

où \(h(0) \) est la \((N+1)\)ième composante.

\[
r_k = r_k = \hat{r}_k
\]

(6.1)

\[
x(k) = h_k^T r + n(k)
\]

(6.2)

\[
h_k^T = D h_k
\]

(6.3)

où \(D \) est une matrice de décalage et \(r \) le vecteur séquence de réflexivité.

La fonction de vraisemblance est donnée par:

\[
J(r|x) = p(x|r) p(r) = p(x|\hat{r}) p(\hat{r}) p(w)
\]

La maximisation de \(J \) est équivalente à la maximisation de \(J_d \) et \(J_e \) définis par:

\[
J_d(t, w| x) = p(w | \hat{x}, t) p(t) p(w)
\]

où \(\hat{x} \) et \(t \) sont les valeurs optimales fournies par \(J \).

La première étape de la déconvolution correspond à la détection des temps d’arrivée \(\{t(k)\} \) des impulsions par maximisation de \(J_d \), et la deuxième correspond à une estimation de leurs amplitudes \(\{w(k)\} \) par maximisation de \(J_e \).

IV-1 Estimation des amplitudes [6]

En supposant la séquence \(\{w(k)\} \) connue, on est ramené au cas gaussien où l’utilisation du filtrage de Kalman est possible. L’estimation des amplitudes \(\{w(k)\} \) est alors équivalente à l’estimation de \(\{r(k)\} \) donnée par les équations récursives suivantes:

\[
\hat{r}_{k+1} = \hat{r}_{k+1} + K_k (v_k^*) (x(k) - h_k^* \hat{r}_{k+1})
\]

(7.1)

\[
K_k = P_{k|k-1} h_k^*
\]

(7.2)

\[
v_k^* = v_k^* - h_k^* P_{k|k-1} h_k^*
\]

(7.3)

\[
P_{k|k} = P_{k|k-1} - K_k v_k^* K_k^*
\]

(7.4)

\[
h_{k+1} = D h_k
\]

(7.5)

Avec les conditions initiales:

\[
\hat{r}_0 = 0
\]

\[
P_{0|0} = v^* D i a g (\hat{r}(k))
\]

(7.6)

La structure particulière des différents éléments de ces équations permet un traitement en ligne, c’est à dire que pour procéder à la \(k \)-ième récursion de l’algorithme, il n’est nécessaire de connaître les valeurs de la trace sismique ainsi celles de la séquence de réflexivité que jusqu’à l’instant \(k \), soit \(k+1 \) pour un traitement avec un lissage d’ordre 1.

IV-2 Détectio des temps d’arrivée

La procédure de détection sous-optimale basée sur la maximisation globale de la fonction de vraisemblance

\[
J_o \propto p(t|x), p(t)
\]

est rendue récursive en maximisant séquentiellement les critères

\[
\xi_k [t(k) | x^{k+1}] = p[t(k) | x^{k+1}, t(k)] p(t(k))
\]

(8.1)

Le vecteur \(x^{k+1} \) est donc donné par:

\[
x^{k+1} = H^{k+1} r + n^{k+1}
\]

\(l \) représente l’ordre du lissage.

On montre que (8.1) est équivalente à:

\[
\xi_k [t(k) | x^{k+1}] = p(t(k)) \sum_{\{r^{k+1}\}} p(r^{k+1} | t(k))
\]

\[
= \frac{1}{\sqrt{2 \pi}} e^{-1/2} (e^{t(k)} \cdot R^{k+1} e^{-1} e^{k+1} t(k))
\]

avec:

\[
R^{k+1} = E \left[x^{k+1} x^{k+1}^T \right]
\]

\[
= v^* [H^{k+1}, H^{k+1}] H^{k+1}^* + (h^*)^T + D i a g (t^{k+1}) H^* t
\]

\(H^{k+1} \) est donné par les \((N + n - (i + 1))\) premières colonnes de \(H^{k+1} \), et \(H^* \) par les colonnes de \((N + n - i)\) jusqu’à la colonne \((N + n - 1)\) de \(H^{k+1} \).

La matrice \(\Pi_{k+1} \) représente les \((n+k) x (n+k)\) premiers éléments de la matrice de covariance \(P_{k+1} \).
IV - 3 Estimation des paramètres du modèle :

La méthode décrite précédemment suppose connus les paramètres nécessaires à déconvolution. L'ondelette source est estimée par la méthode décrite au (IV-1), la variance du bruit additif se mesure empiriquement sur les portions de trace où les réflexions sont atténuées. Le paramètre λ est évalué a priori, l'algorithme étant assez robuste à son choix. On peut le modifier en insérant une boucle supplémentaire qui itère estimation de λ et détection-estimation.

Connaissant λ_k, le modèle ARMA, la séquence de réflectivité jusqu'à l'instant k et le signal jusqu'à $k+1$, on calcule la variance sous les hypothèses du lissage utilisé dans les deux cas: absence ou présence d'impulsion, ce qui est ensuite utilisé pour faire un test d'hypothèses par maximum de vraisemblance. On estime ensuite l'amplitude de cette impulsion par un filtre de Kalman. Ayant exploré tout le signal, on estime λ_{k+1} par une simple moyenne empirique sur le nombre d'impulsions. On itère la procédure jusqu'à une stabilisation de la position des impulsions.

V - Application à des signaux sismiques haute résolution :

Signal synthétique :

La réflectivité est simulée par une séquence Bernoulli-gaussienne centrée de cumulant d'ordre trois $\gamma_3 = 0,29$. L'ondelette source est représentée par un filtre ARMA (4,3) à phase non-minimale. Il est choisi de façon à ce que son spectre d'amplitude approche celui du signal réel (i.e. spectre approximativement centré autour de 2,5kHz). Sa fonction de transfert est :

$$H(z) = \frac{1 + 0,1z^{-1} - 3,2725z^{-2} + 1,41125z^{-3}}{1 - 0,58z^{-1} + 1,1733z^{-2} - 0,2979z^{-3} + 0,3135z^{-4}}$$

La trace synthétique (fig(1.a)) est obtenue par convolution de $h(k)$ avec $r(k)$ et addition d'un bruit gaussien (RMS=28dB).

Fig(2.b) représente l'ondelette originale, l'ondelette à phase minimale et celle à phase non minimale estimée par la méthode décrite par III.

Fig(1.c) représente la réflectivité simulée et son estimation en déconvolutant par la vraie ondelette. Le résultat de la déconvolution par l'ondelette estimée précédemment est représenté par [fig(1.d)] dans le cas sans lissage et [fig(1.e)] pour un lissage d'ordre 5. On voit que le lissage améliore bien l'estimation des amplitudes. La position des impulsions est bien retrouvée.

Signal réel :

Ces méthodes sont appliquées à deux types de traces sismiques en réflexion sous-marine fournies par l'IFREMER.

Le premier type de trace est obtenu à l'aide du Sondeur de sédiment (2,5kHz), le second à l'aide du canon à eau.

Fig (2.a) donne un exemple de portion de trace du Sondeur de sédiment de durée 25ms, ces signaux sont échantillonnés à 12,5kHz. On applique la méthode de déconvolution décrite ci-dessous sur cette portion. Fig(2.b) donne la signature de source à phase minimale et celle à phase non-minimale. La réflectivité est représentée par Fig(2.c).

Un exemple de trace sismique obtenue à l'aide du canon à eau est donné par Fig(3.a) pour une durée égal à 32ms. (la fréquence d'échantillonnage est égale à 4kHz). Fig(3.b) donne le signal de source à phase minimale et celui à phase non-minimale. La réflectivité est représentée par Fig(3.c).

Figure.1
VI - Conclusion :

Pour faire une déconvolution aveugle en sismique réflexion sous-marine, on associe l’estimation de l’ondelette source par un modèle ARMA à phase non-minimale évalué par une méthode utilisant le cumulant d’ordre trois et l’estimation de la réflexivité par un modèle Bernoulli-gaussien.

Dans le cas de signaux de synthèse, la méthode montre son efficacité. Les résultats obtenus sur les traces simulées, en l’absence de connaissance de la signature du signal de source et de la séquence de réflexivité, dans le cas du sondeur de sédiment, comme pour le canon à eau, présentent des caractéristiques de déconvolution tout à fait vraisemblables. Deux points sont à évaluer ultérieurement : une estimation précise de la variance du bruit additif, dont la valeur modifie de façon sensible les résultats, et, dans le cas du canon à eau, l’influence de la décroissance du rapport signal à bruit tout au long de l’enregistrement. Il reste aussi à examiner de manière systématique de nombreux enregistrements.

Remerciements

Ce travail est effectué en collaboration avec l’IFREMER Dpt Géosciences marines (Mr G.Lericolais) et Dpt Géne océanique (Mr B.Marsset, Mr J.Meunier). Nous les remercions d’avoir autorisé la publication des résultats obtenus sur les signaux réels.

Références :